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Dimerization of TFll D When Not Bound to DNA physiological significance of dimerization is 
dependent on whether TBP-TAF complex- 

Andrew K. P. Taggart and B. Franklin Pugh* es also dimerize. 
To test whether TFIID dimerizes, we 

subjected a partially purified HeLa TFIID 
For unknown reasons, the eukaryotic transcription factor TFllD inefficiently recognizes fraction (P.7), which contained approxi- 
promoters. Human TFllD was found to form highly specific homodimers that must dis- mately 20 to 30 nM TBP, to chemical 
sociate before DNA binding. TFllD dimers formed through self-association of the TATA- crosslinking with the use of bis(ma1eim- 
binding polypeptide (TBP) subunit and could be immunoprecipitated with antibodies to ido)hexane (BMH). In the absence of 
TAF,,250, the core subunit of TFIID. Chemical cross-linking experiments in HeLa cells BMH, the TBP present in the P.7 fraction 
revealed the presence of TBP dimers in vivo. These findings suggest that dimerization migrated on an SDS-polyacrylamide gel, 
through TBP is the physiological state of TFllD when not bound to DNA. Thus, the with a molecular mass of 44 kD (Fig. 1A). 
inefficiency of TFllD binding to a promoter may be partly attributable to the competitive In the presence of BMH, a 90-kD species 
effect of dimerization. appeared in the P.7 fraction with a mobility 

indistinguishable from that of cross-linked 
recombinant TBP dimers. No other major 
crosslinker-dependent TBP-containing spe- 

Transcription of eukaryotic genes requires before they can bind DNA. These findings cies was detected, even though the TFIID 
the formation of a preinitiation complex are consistent with the reported dimeric was <0.1% pure. The   re dominance of the 
containing one of three nuclear RNA poly- crystal structure of TBP dimers (5). Because 90-kD species, among a > 1000-fold molar 
merases and additional basal factors ( I ) .  TBP is generally complexed with TAFs, the excess of nonspecific nuclear proteins, re- 
Sequence-specific transcriptional activators 
function, in part, through direct interac- 

IsobM tions with basal factors, including polymer- Fig. 1. TBP-TBP cross-linking of TFllD in a crude A B P79DXD 

ase-specific TBP-TAF complexes such as fraction. (A) Crosslinking of the TFllD fraction re- - LI U_ - CIOSI Ihnhed C~OSS-lmked 

SL1, TFIID, and TFIIIB (2). In RNA poly- suits in a single TBP-containing 90-kD product. a h % <  t + k~ TBP ojmer producl 

merase 11 transcription o f m ~ ~ ~  genes, the P.7 (TFIID) or purified recombinant TBP were in- ? % '; yBMH 116 - ' + + - G1u-C 
kD 

binding of THID to the promoter is rate- cubated briefly in the absence (-, lanes 1 and 2) 16 80 a eu- ~ ~ ~ ~ o h i t i c  
or presence (+. lanes 3 and 4) of BMH (10). P.7 80 -- 90kD fragments limiting in complex assembly (3). Activa- (TFIID) was generated by passing Hela nuclear 

tors might enhance the of extracts over phosphocellulose and taking a step 47 b Monomer 

TF1lD the promoter targeting TAFs elution of 0.5 to 0.7 M KCI. Reactions were ana- 47 
1 2 3 4 5  

(TBP-associated factors) and TFIIA (3); lyzed by SDS-PAGE and protein immunoblotting M-u Monomer TAFl1250 
however, the exact mechanism by which with affinity-purified anti-TBP. The purity of the 

7 3 3 4  0 

u 
TFIID is recruited is not known. TBP was 9906, and that of the TFllD was ~ 0 . 1 % .  (B) Proteolytic fingerprinting of 2s 

The core DNA-binding do- the 90-kD band from cross-linked P.7 identifies it as a TBP dimer. The TBP- g g s  
+ 3 m  

main of TBP homodimerizes at low nano- containing 90-kD products from cross-linked recomb~nant TBP and cross-linked Dimer. , -- 
molar concentrations (4) .  consequently, P.7 (TFIID) were isolated and subjected to limited proteolysis with endoprotein- 

ase GIu-C (lanes 3 and 4, respectively) (1 7 ) .  Lanes 2 and 5 show the correspond- TBP dimen must dissociate monomers 
ing reaction performed in the absence of proteinase TBP monomers and cross- - - . 

centerfor G~~~ ~ ~ ~ ~ l ~ ~ i ~ ~ ,  bpartment of ~ ~ . , ~ ~ i ~ t ~  linked dimer markers are shown in lane 1 . (C) Cross-linked TBP dimers present 
and Molecular Biology, Pennsylvania State University, in the P.7 (TFIID) fraction are part of the TFIID complex. Cross-linked P.7 was 1 2 3  

University Park. PA 16802. USA. subjected to immunoprecipitation with anti-TAFl,250 in the absence (lane 2, unblocked) or presence (lane 

*TO whom c-pondence should be addressed. 3, blocked) of neutralizing TAFl,250 antigen (72). The immunoprecipitates were subjected to protein 
E-mail: bfp2@psuwn.psu.edu immunoblot analysis with anti-TBP. A TBP dimer marker is shown in lane 1. 
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vealed an extraordinary degree of interac- 
tion specificity between the two cross-' 
linked proteins and is therefore unlikely to 
have arisen from random collisions of two 
noninteracting proteins. The protein cross- 
linked to TBP could be either another TBP 
molecule or a different protein with an ap- 
parent molecular mass identical to that of 
TBP. 

To determine whether the cross-linked 
90-kD species present in the P.7 TFIID 
fraction represented a TBP dimer, we ex- 
cised the 90-kD bands that corresponded to 
the cross-linked recombinant TBP dimers 
and the cross-linked P.7 TFIID fraction, 
and we subjected these bands to limited 
proteolysis with endoproteinase Glu-C. The 
resulting pattern of bands provided a diag- 
nostic fingerprint of the two cross-linked 
proteins. The partial proteolytic pattern of 
the P.7 90-kD species was equivalent to 
that of pure recombinant cross-linked TBP 
dimers (Fig. 1B). The similarity of these 
fingerprints provided strong evidence that 
the protein cross-linked to TBP was a sec- 
ond molecule of TBP. Had a different pro- 
tein been cross-linked to TBP, a different 
proteolytic pattern would have been ex- 
pected. Thus, the TBP present in the P.7 
fraction has the capacity to form dimers in 
a manner similar to that of recombinant 
TBP. 

We were concerned that the observed 
P.7 TBP dimers might reflect "free" TBP 
rather than TBP-TAF complexes. To deter- 
mine directly whether TFIID dimerizes 
through TBP-TBP interactions, we used an- 
tibodies to TAF,,250 (anti-TAF1,25O) to 
immunopurify TFIID from a cross-linked 
P.7 fraction. TAFI1250 is the core subunit of 
TFIID upon which most of the other TAFs 
and TBP bind (6). TAFI1250 does not ap- 
pear to be a component of other previously 
described TBP-TAF complexes, and thus it 
represents a marker for TFIID. Cross-linked 
TBP dimers were immunoprecipitated with 
anti-TAF,,25O (Fig. 1C). To control for 
nonspecific precipitation, we preblocked 
the anti-TAFI1250 with pure TAF11250 an- 
tigen. The preblocked anti-TAFI1250 was 
unable to immunoprecipitate TBP dimers, 
which indicated that TBP was not precipi- 
tating nonspecifically. From these data, and 
from protein immunoblot estimates of the 
TBP and TAF11250 concentrations in P.7 
and consideration of total protein content, 
we conclude that at low nanomolar TFIID 
concentrations and in the context of a 
>1000-fold molar excess of other nuclear 
proteins, the TFIID complex has the capac- 
ity to dimerize with extremely high speci- 
ficity through a TBP-TBP interface. 

With recombinant TBP, we envision the 
dimer interface as encompassing the saddle- 
shaped DNA-binding domain, as described 
for the x-ray crystal structure of TBP (5). 

According to this structure, TBP dimeriza- 
tion is incompatible .with DNA binding; 
recent biochemical studies provide evi- 
dence for this interpretation (4). If the same 
interface applies to TFIID dimers, then 
TFIID dimerization should also be inhibited 
by DNA containing a TATA box. As ex- 
pected, recombinant TBP dimerization was 
inhibited by TATA but not by an equiva- 
lent oligonucleotide containing two point 
mutations in the TATA box (Fig. 2A). 
When the P.7 TFIID fraction was incubated 
with TATA, TBP dimerization was inhib- 
ited. Equivalent amounts of the mutant 
TATA had little effect (Fig. 2A). The pat- 
tern of dimerization inhibition was repro- 
ducible over a range of nonspecific compet- 
itor DNA concentrations. Full inhibition of 
the P.7 dimer signal with TATA was not 
observed. The basis for the limited disrup- 
tion was not investigated but might be the 
result of a number of factors, including the 
presence of other TBP-TAF complexes that 
lack specificity for TATA. Because TATA 
preferentially inhibits TFIID dimerization 
relative to an equivalent concentration of 
mutant TATA, it can be inferred that 

ombinant , 

TATA Mutant TATA 

. . .  
+ Nonspec. 
DNA 

Fract~on 
t TATA 
DNA 

Fig. 2. TATA binding prevents dirnerization. (A) 
TATA inhibits crosslinking of TBP. Recombinant 
TBP (upper panel) or P.7 (TFIID, lower three pan- 
els) were incubated in the absence (lane 1) or 
presence of either a TATA (TATAAAA, lane 2) or a 
mutant TATA (TAAGAAA, lane 3) oligonucleotide 
(13). Reactions were then treated with BMH, and 
TBP was detected by protein immunoblotting, as 
described in Fig. 1. The lower three panels repre- 
sent cross-linked reactions performed in the pres- 
ence of increasing amounts of nonspecific herring 
sperm DNA (hsDNA), as indicated. (B) Reduction 
in the mass of the TFllD complex upon TATA bind- 
ing. P.7 was incubated in the presence of TATA 
DNA oligonucleotide or nonspecific control dG-dC 
DNA (nonspec. DNA) and then subjected to Su- 
perose 6 gel fittratiin (14). Results equivalent to 
the control were obtained in the absence of DNA. 
Elinion of TFllD was monitored by probing protein 
immunoblots with anti-TAFl,250. Elution peaks of 
molecular mass standards are indited. ' 

TFIID dimerization competes with DNA 
binding. 

Under conditions where recombinant 
TBP predominates as.dimers (as measured 
by gel filtration and protein affinity chro- 
matography), the yield of cross-linked 
dimers is relatively low (-10%) (4). Inas- 
much as the yield of cross-linked TFIID 
dimers is also in the same range, we sur- 
mised that much of the TFIID in the P.7 
fraction is present as dimers. We investigat- 
ed this possibility with gel filtration chro- 
matography. TFIID, as detected by protein 
immunoblotting with anti-TAFI1250, elut- 
ed primarily in a single peak with an appar- 
ent native mass of -1800 kD (Fig. 2B, 
nonspecific DNA). However, when TFIID 
was incubated with TATA, its apparent 
native mass decreased to -1000 kD (Fig. 
2B, TATA oligonucleotide), which is 
roughLy half of that obtained in the pres- 
ence of a nonspecific DNA. This size reduc- 
tion would be expected if TATA is pre- 
venting TFIID dimerization. Because the 
bulk of TAFI1250 eluted at -1800 kD 
(dimer range) and not at -1000 kD (mono- 
mer range), at low concentrations (2 to 5 
nM) much of the TFIID in the P.7 fraction 
appears to be dimeric when not bound to 
DNA:The observation that TFIID's native 
size decreased by roughly half upon TATA 
binding indicates that when not bound to 
DNA, TFIID is most likely dimerizing with 
itself (or another large TBP-TAF complex), 
as opposed to dimerizing with free TBP. 

The propensity for TFIID to dimerize at 
low nanomolar concentrations in vitro sug- 
gests that TBP also dimerizes in vivo, where 
the TBP concentration is >1 FM (7). To 
test this possibility, we incubated HeLa cells 
in the presence or absence of crosslinker. 
The extent of global protein crosslinking 
was assessed by SDS-polyacrylamide gel 

A BMH BMH - - 
kD - + - + 
20c- - 34 

. i 
1 1 6 - 4  
9 7  + - Dimer m - 4 

1 2 3  
1 2 3 4  

Fig. 3. TBP dimerization in vivo. Hela cells were 
either mock- or BMH-treated (15). (A) Portions of 
the mock-treated (lane 2) and BMH-treated (lane 
3) cells were analyzed for total protein content by 
SDS-PAGE followed by silver staining. Molecular 
mass markers are shown in lane 1. (B) The mock- 
treated (lane 2) and BMH-treated (lane 3) cells 
were extracted with GuHCI, and the TBP was 
immunopurified and subjected to SDS-PAGE fol- 
lowed by protein immunoblotting. TBP dimer 
markers are shown in lanes 1 and 4. 
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electrophoresis (PAGE) followed by silver 
staining. Some proteins were entirely cross- 
linked into species of high molecular mass, 
whereas others showed little change (Fig. 
3A). To analyze TBP, we extracted cross- 
linked and non-cross-linked cells with gua- 
nidine hydrochloride (GuHCl) and then im- 
munopurified and analyzed the TBP by pro- 
tein immunoblotting. When cells were treat- 
ed with BMH, a 90-kD species appeared that 
was not present in mock-treated controls 
(Fig. 3B). The 90-kD species exactly comi- 
grated with recombinant TBP dimers, which 
suggests that the 90-kD species represents 
TBP dimers cross-linked in vivo. 

In actively growing HeLa cells, a large 
proportion of TBP is likely to be bound to 
transcriptionally active promoters, and thus 
monomeric. Because we cannot assess the 
efficiency of TBP crosslinking in HeLa 
cells, only a lower limit of the dimer con- 
centration can be estimated. If we assume 
that TBP dimers cross-link in vivo with the 
same efficiency as do TBP dimers in vitro, 
then a lower limit of -10% of the TBP is 
estimated to be dimeric in HeLa cells under 
standard growth conditions (Fig. 3B). If the 
efficiency of crosslinking in vivo is lower 
than that of crosslinking in vitro, then the 
data lead to a higher estimate of dimers in 
vivo. The minimal concentration of endog- 
enous TBP dimers is estimated to be in the 
range of - 100 nM, which is well above the 
concentration necessary for dimer forma- 
tion in vitro. 

We envision the dimer interface of 
TFIID as overlapping with the DNA-bind- 
ing surface in the conserved saddle-shaped 
domain of TBP (Fig. 4). This arrangement 
is based on the crystal structure of TBP 
dimers (5). We cannot exclude the possi- 
bility that the dimers detected here are 
different from that observed in the crystal 
structure. However, our previous biochem- 
ical observations that the TBP dimer inter- 
face is located in its COOH-terminal do- 
main, is hydrophobic, and is sequestered 
when bound to TATA as a monomer (4) 
are consistent with the TBP crystal struc- 
ture. Thus, Fig. 4 represents the most par- 

Fig. 4. A model for TFllD dimerization. The con- 
cave saddle-shaped DNA-binding domain of TBP 
(black) is envisioned to encompass the dimeriza- 
tion interface. Dimers must dissociate in order for 
TFllD monomers to bind DNA. Because we have 
no direct evidence that TAFs (gray) affect the 
dimerization process, the cartoon excludes their 
interactions. However, TAFs may function to 
modulate the dimerization process. 

simonious interpretation of the data. 
If TFIID forms dimers that do not bind 

DNA, then why does TFIID (and possibly 
other TBP-TAF complexes) dimerize? Di- 
merization might keep TBP from nonspe- 
cifically binding to much of the chromo- 
somal DNA. TBP has a high intrinsic affin- 
ity for nonspecific DNA (8); once bound, 
TBP is slow in dissociating and can assem- 
ble functional transcription complexes (8). 
Although the high affinity of TBP for 
nonspecific DNA may have implications 
with regard to TBP function at TATA-less 
promoters, it also raises a concern that 
TBP-TAF complexes would become se- 
questered in a sea of nonspecific DNA 
present throughout the genome. However, if 
TBP-TAF complexes masked the DNA- 
binding surface of TBP through dimeriza- 
tion, then nonspecific binding would be 
minimized. Given this possibility, some 
promoter-bound transcriptional activators 
might couple dimer-to-monomer conver- 
sion of TBP-TAF complexes to promoter- 
specific DNA binding. 
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throughs were incubated with 0.03 ml of anti-TBP 
serum covalently cross-linked to 0.03 ml of protein 
A-sepharose overnight at 4% with constant mix- 
ing. The resin was pelleted by centrifugation and 
washed twice with -300 bed volumes of HO buffer 
containing 1 M GuHCl and 0.005% nonidet-40, 
followed by a wash with HO buffer lacking GuHCI. 
Bound proteins were eluted with PSB and subject- 
ed to SDS-PAGE on a 7.8% gel. TBP was detected 
by protein immunoblotting (ECL method). 
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