
4 S F~elds and R Sternganz, Trends Cenet 10, 286 
(1 994) 

5, The pLexA-TAKIAN plasrn~d comprises the 
TAKIAN cod~ng sequence (TAKI res~dues 21 to 
579) (2) nseried In frame n to  pBTMl 16 [A B Vojtek, 
S M Holenberg J A Cooper, Cell 74, 205 (1993)) 
The yeast tvdo-hybr~d system vdas used to dentty 
protens encoded by a human bran cDNA hbrary that 
Interact w~ th  TAKIAN The two hybr~ds were ex- 
pressed n a Saccharornyces cerevis~ae stran L40 
(LYS2::ieA-HIS3) that contans an Integrated repori- 
er construct In vdhch a bndng  ste for the LexA 
proten vdas placed upstream of the yeast HIS3 cod- 
n g  regon If the two hybr~d prote~ns Interact, then 
transactvaton of the reporter construct occurs and 
the yeast cells can grovd n the absence of hs tdne  
(SC-HIS). The LeA-TAKl  AN fuson proten alone n -  
duced suffcent HIS3 expresson to allow growth n 
the absence of exogenous h s t d n e  However, hist- 
dne auxotrophy could be reestabshed by growng 
cells In the presence of 40 mM 3-am~notr~ozole a 
chem~cal n h ~ b ~ t o r  of the HiS3 product. m~dazole 
glycerol dehydrogenase [G M K~shore and D M 
Shah, knn i l  Rev. Biochem 57. 627 (1 988)) 

6 K r ~ e  et a/ Swence 265 171 6 (1 994) 
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of the Stel 1 p, Ste7p, and e~ther Fus3p or Kssl p kl- 
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t~vity in a Ste7P3"-dependent manner 

8 The DNA sequence that encodes the HA epltope 
recognzed by the monoclonal antbody 12CA5 was 
attached n frame to the DNA encodng the COOH 
te rmn  of TAKl and TAKI (K63'W) by the polymerase 
cha r  reacton (PCR) A constructs were expressed 
from the TDH3 promoter. The TABl expresson pas-  
m ~ d ,  pGAP-HTHSM encodes the COOH-term~nal 
68 amno acds of TABl The codng sequence for 
the COOH-terminal 68 amno acds of TABl was 
a m p f ~ e d  by PCR w~ th  a 5' prlmer (5'-GAGAAT- 
TCATGCGGCAMGC-3') ncorporat~ng an Eco Rl 
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(Contech). The nuceotde sequence (-GATGG] 
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nzed by the monoclonal antbody SEl0 In the re- 
su tng  pasmd ,  pCS2MT-TABl. DNA encodng the 
MYC eptope tag vdas attached In frame to the DNA 
sequence correspond~ng to the NH,-term~nus of 
TABl The pCS2MT-TAB1 plasm~d was d~gested 
w ~ t h  Bam HI and Xba I and the resultng fragment 
was solated and nseried Into the Eco R X b a  I sltes 

of the mamlnaan expresson i'ector pEF In wh~ch 
expression 1s controlled by the human elongat~on 
factor : n (EFl n\ gene promoter 
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Requirement for Cholinergic Synaptic 
Transmission in the Propagation of Spontaneous 

Retinal Waves 
Marla B. Feller,* David P. Wellis, David Stellwagen, 

Frank S. Werblin, Carla J. Shatz 

Highly correlated neural activity in the form of spontaneous waves of action potentials is 
present in the developing retina weeks before vision. Optical imaging revealed that these 
waves consist of spatially restricted domains of activity that form a mosaic pattern over 
the entire retinal ganglion cell layer. Whole-cell recordings indicate that wave generation 
requires synaptic activation of neuronal nicotinic acetylcholine receptors on ganglion 
cells. The only cholinergic cells in these immature retinas are a uniformly distributed, 
bistratified population of amacrine cells, as assessed by antibodies to choline acetyl- 
transferase. The results indicate that the major source of synaptic input to retinal ganglion 
cells is a system of cholinergic amacrine cells, whose activity is required for wave 
propagation in the developing retina. 

Spontaneous activity generated in imma- 
ture circuits is present in various regions of 
the  central nervous system (1-3) and Dar- 
ticipates in the developmen; and diffeien- 
tiatlon of synaptic circuitry (4) .  Long before 
the  onset of vision, lnamlnaliall retinal pan- 
glion cells exhibit spo~~taneous ,  periodlc 

Howard Hughes Med~ca lnst~tute and Department of 
Molecular and Cell B~ology. Un~vers~ty of Cal~forn~a. 
Berkeley, Berkeley CA 94720-3200 USA 

'To vdhom correspondence should be addressed at 221 
L~fe Sciences Addton. Unversty of Caforna Berkeley, 
CA 94720-3200. USA E-ma m a r a ~ ~ v ~ o l e t  berkeey ed-I 

bursts of actlon potentials (5-7). A t  this 
early stage of development, blockade of 
neural activity prevents the  segregation of 
retinal ganglion cell axons into appropriate 
eye-specific layers within their thalalnic tar- 
get ~ n ~ c l e u s  (8), and modification of retima1 
actlvity a t  later ages alters the  development 
of retinal ganglion cell dendrites and recep- 
tive fields (9) .  

T h e  spatial pattern of activity among 
neighboring ganglion cells resembles waves 
that periodically propagate across the gan- 
glion cell layer ( 6 ,  10). T o  investigate the 
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suggested possibility that an early function- 
al network consistine of both amacrine and u 

ganglion cells is involved in the generation 
of retinal spontaneous activity ( lo),  we 
used both whole-cell recording techniques 
and ' optical imaging of fura-2-stained 
whole-mount retinae from newborn ferrets 
(11). 

Fluorescence imaging revealed that each 
wave does not propagate across the entire 
retina but is spatially restricted to a discrete 
region, which we call a domain (Fig. 1) (1 2). 
The domains vary in shape; some appear to 
fan out from a central region (Fig. lB, top 
row, first minute: blue and purple waves), 
and others propagate with a linear wave 
front (Fig. lB, top row, first minute: red and 
orange waves). Waves can originate from the 
center of the field of view, indicating that 
the waves are not initiated simply at tissue 
edges or discontinuities. [These characteris- 
tics are illustrated in the first seement of the " 
videotape that accompanies this report ( 12a, 
segment I).] Similar patterns of activity were 
recorded from 89 retinas. 

Over a prolonged recording period (Fig. 
lB, top row), a mosaic emerges indicating 
that over time, the entire retina becomes 
"tiled" by individual domains (Fig. lB, bot- 
tom row). Also the boundaries between 
individual domains are not fixed. For exam- 
ple, the region covered by the purple do- 
main in the first minute of recording in Fig. 
1B (top row) is subsequently covered by 
four smaller domains in the last minute of 
recording. 

O n  a time scale of less than 1 min, how- 
ever, neighboring wave domains do not in- 
vade each others' borders (Fig. lB), whereas, 
as mentioned above, over a longer period (4 
min) the overlap is substantial. Thus, there 
appears to be a refractory period following 
activation of a group of cells during which 
they cannot participate in another wave. To  
examine this possibility, we computed the 
difference in initiation times of neighboring 
 airs of waves that did not invade each 
other's territory versus those pairs that did 
invade each other's territory. The results 
from one retina (Fig. 2A) indicated that 
when neighboring waves initiated within 45 
s of each other, no domain overlap occurred. 
In six retinas, refractory periods of 40 to 60 s 
were observed bv this method. 

We next examined the boundaries of 
waves generated artificially by depolariza- 
tion. Pressure ejection of K+ from a mi- 
cropipette can depolarize a small group of 
cells that can then generate a propagated 
wave (12a, segment 2; 13). A refractory 
period analysis on the evoked domains in- 
dicated that, whenever a propagated wave 
resulted. the interval between consecutive 
evoked or spontaneous waves was more 
than 50 s (Fie. 2B). In all three retinas . "  . 
examined, this interval was identical to the 

refractory period derived by examining all 
the spontaneously generated waves occur- 
ring in the same field of view (Fig. 2B, lower 
histoeram). These observations indicate 

u ,  

that the geometry of individual domains is 
dynamic and not due to the activation of 
invariant groups of cells. Rather, the past 
history of excitability in the retina is likely 
to dictate the patterning of the domains. 

To  gain insight into the mechanism of 
generation and propagation of the waves, 
we monitored the membrane properties of 
retinal ganglion cells with whole-cell patch 
clamp recordings (14). Voltage clamp re- 
cordings revealed periodic barrages of 
postsynaptic currents (PSCs) (Fig. 3A) that 
appear to be composed of many individual 
PSCs. The interval between compound 
PSCs in this case was 110 ? 44 s, closely 
matching the period between waves (1 15 2 

48 s) optically recorded from the surround- 
ing tissue. Similar periodic compound PSCs 
were observed from more than 85% of the 
recorded cells (120 of 135, n = 56 retinae). 

These observations suggest that gangli- 
on cells receive synaptic inputs that are 
generated as waves pass through the area, 
a possibility supported by simultaneous 
whole-cell recording from a single gangli- 
on cell and fluorescence imaging of the 
surrounding retina (Fig. 3B). Eight gangli- 
on cells in four different retinas were re- 
corded; 94% of the waves that traversed 
the region generated a compound PSC in 
the recorded cell, and nearly (92%) every 
compound PSC was accompanied by a 
detectable change in fluorescence. Thus, 
there is a correspondence between the 
periodic compound PSCs and the increas- 
es in intracellular calcium concentration 

Fig. 1. Spontaneous waves measured with fluorescence imaging in a P2 ferret retina stained with 
fura-2AM. (A) Time evolution of two separate waves, occurring 30 s apart. First wave (top): Successive 
1 -s intervals from a real-time movie of the fura-2 fluorescence decrease associated with increased [Ca2+Ii 
evoked by waves (72). Second wave (bottom): Successive 0.5s intervals. (B) The spatial and temporal 
properties of 30 consecutive waves observed over a 4-min recording period. (Top) Four consecutive 
minutes of activity. Background: fluorescence image (380-nm excitation). Different colors correspond to 
individual domains with a color-coded time bar below each frame to indicate the time of propagation of 
each event. The red domain of the first frame corresponds to the wave shown in the top sequence in (A); 
the purple domain corresponds to the wave in the bottom sequence. The gradation of color within each 
event corresponds to the direction of propagation of the wave, with the most saturated color correspond- 
ing to the initiation zone. (Bottom) Outline of each of the domains shown on the top, with the regions that 
participated in more than one wave shown in black. Scale bar, 100 km. 
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Fig. 2. Refractory period analysis. (A) Distribution of the difference in the 
initiation times of neighboring waves recorded from a P7 ferret retina. In all, 1 15 
neighboring waves (any two whose domains abutted or overlapped) were 
considered. The neighboring pairs were placed in one of two categories de- 
pending on whether (i) a wave in one domain was unable to invade the other's 
territory (the region of overlap was less than 10% of the total area of either 
domain), or (ii) a wave in one domain could invade the territory of the other (the 
region of overlap was more than 10%). Only neighboring waves that had 
initiation times within 90 s of each other were considered. An example of a pair 
of waves that did not invade each other's territories is shown on the upper left; 
a pair of waves that did invade is shown on the right, with the overlap region 
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indicated in black. The refractory period is the time covered by the histogram 
distribution of the first category (open bars), which in this experiment is about 
45 s. Scale bar, 100 p m  (B) Waves can be induced by puffs of ACSF contain- 
ing 120 mM KC (13). On the left are domains of two waves induced by pressure 
ejection of K+ (gray). Neighboring waves that occurred spontaneously within 2 
min of the first puff (open areas) are also shown. The black region represents 
the spatial extent of the K+-induced direct depolarization that was determined 
by applying a second puff of K+ during the refractory period of the surrounding 
tissue. On the right are the initiation intelval histograms of spontaneous waves 
compared to puff (top, n = 17 wave pairs) or to other spontaneous waves 
(bottom, n = 29 wave pairs). Scale bar, 100 pm. 

20 PA I ([Ca2+],) as waves traversed the region, 

1 s 
suggesting that they both reflect the same 
phenomenon. In addition, when 50 to  100 

7 IJ.M Cd2+ was added to the bath during 

I whole-cell recordings (five cells, two reti- 

r nae) the periodic compound PSCs were 
essentially abolished (Fig. 3C), as would 
be expected if currents are generated by 
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Fig. 3. Periodic compound PSCs measured in ganglion cells. (A) Continuous whole-cell voltage clamp 
recording for 28 min; an expansion of 5 s surrounding a single compound PSC (top). (B) Top: spatial 
extent of the first two waves passing through the region surrounding a whole-cell recording electrode. 
Scale bar (lower right), 200 pm. (Bottom) Continuous simultaneous recordings for 20 min [top traces 
correspond to the voltage clamp recordings; bottom traces correspond to the fractional change in fura-2 
fluorescence (AF/F) associated with waves averaged over the 0.5 mm2 surrounding the recording 
electrode]. The breaks in the fluorescence trace correspond to readjustments of camera gain to com- 
pensate for fading of the fura-2 dye. *, Wave that did not involve the cell from which we were recording. 
#, Compound PSC where the fluorescence change induced by the associated wave was either below the 
sensitivity of the optical technique or not there at all. (C) Compound PSCs were blocked by a bath 
application of 100 pM Cd2+. Each vertical line represents the magnitude of the current integrated over a 
5-s period surrounding each barrage. Only values above 1 pA-s were included. 

means o f  synaptic transmission. 
Pharmacological studies of the develop- 

ing mammalian retina have shown that, 
even though ganglion cells receive sponta- 
neous miniature synaptic inputs that can be 
blocked by glutamate antagonists at early 
ages (IS), the retinal waves are not  blocked 
by these agents (7, 10). Other candidate 
transmitter systems in the retina at early 
ages include the transmitters contained 
within amacrine cells. Studies in the devel- 
oping retinas of rabbit and turtle have 
shown that the periodic bursting of retinal 
ganglion cells can be modulated by cholin- 
ergic agonists and antagonists (16), imply- 
ing a possible role for cholinergic amacrine 
cells in the generation and propagation of 
retinal waves. 

Bath application of d-tubocurarine, a nic- 
otinic acetylcholine receptor (nAChR) an- 
tagonist, reversibly blocked the periodic 
compound PSCs recorded from retinal gan- 
glion cells (Fig. 4A). However, cw-bungaro- 
toxin, an antagonist that blocks a subset of 
nAChRs, had no effect on  the periodic in- 
creases in [Ca2+], (Fig. 4B), whereas curare 
abolished them entirely as expected from the 
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whole-cell results. In addition, bath applica- 
tion of nicotine blocked the periodic com- 
pound PSCs (10 p.M, three cells, three ret- 
inas) and the periodic increases in [Ca2+], 
(four retinas), most likely through desensiti- 
zation of the nAChR (1 7). These obsewa- . , 

tions implicate the a-bungarotoxin-insensi- 
tive subtype of neuronal nAChR (18), 
which is present in the vertebrate retina 
(19), in the generation of the waves. In 
addition, we attempted to induce waves in 
the presence of curare by pressure ejection of 
K+ (as in Fig. 2B). Although pressure ejec- 
tion of K+ could always induce a local de- 
polarization of ganglion cells close to the 
pipette, the excitation did not evoke a prop- 
agating wave when curare was present in the 
bath (Fig. 4C, five retinas). Thus, cholin- 
ergic synaptic transmission is required for the 
propagation of the waves. Consistent with 
this conclusion, waves could also be pro- 
duced by pressure ejection of acetylcholine 
(ACh) or nicotine (12a, segment 3). How- 
ever, consecutive waves were not induced as 
reliably as with K+ because successive pres- 
sure ejection of nicotine did not directly 
depolarize cells sufficiently to generate a de- 
tectable increase in [Ca2+Ii, presumably as a 
result of receptor desensitization. We con- 
clude that depolarization through activation 
of nAChRs is sufficient to start a wave; 
however, these experiments do not permit us 
to conclude that the waves are naturally 
initiated by ACh. 

To determine whether retinal ganglion 
cells receive direct cholinergic input, we 
next examined the periodic compound 
PSCs recorded from ganglion cells for cur- 
rent-voltage characteristics similar to those 
of a-bungarotoxin-insensitive neuronal 
nAChRs, which typically show inward rec- 
tification with an inflexion near 0 mV (18). 
To our surprise, inward currents recorded at 
-60 mV could be reversed at -20 mV (Fig. 
5), suggesting that another conductance is 
also activated during waves. A likely can- 
didate is a a-aminobutyric acid (GABA)- 
mediated chloride conductance because 
most amacrine cells contain and release 
GABA (20); in fact, SR95531, a selective 
and potent GABAA receptor antagonist for 
retinal ganglion cells (21), significantly re- 
duced the outward current measured at de- 
polarizing holding potentials (Fig. 5A), re- 
vealing an underlying inward rectifying cur- 
rent (Fig. 5B) (22). 

In contrast, SR95531 had no effect on 
the periodicity of the compound PSCs, in- 
dicating that the GABAA antagonist had 
no effect on the generation of the waves. In 
addition, imaging experiments showed that 
the increases in [Ca2+], associated with the 
waves persisted in the presence of SR95531 
with no detectable change in the periodic- 
ity of the waves (n = 4). Our obsewations 
taken together indicate that retinal gangli- 

Fig. 4. Effects of d-tubocu- 
rarine on spontaneous and 
evoked waves. (A) Continu- 
ous whole-cell recordings 
from a ganglion cell in ACSF 
and in ACSF containing 100 
pM d-tubocurarine (n = 8 
cells, 6 retinas). (B) AF/F av- 
eraged over a (100 pm)2 
area of tissue in ACSF, in 
ACSF containing 200 nM 
a-bungarotoxin (n = 2 reti- 
nas), and in ACSF contain- 
ing 100 pM d-tubocurarine 
(n = 10 retinas). (C) (Top) 
Superposition of two con- 
secutive K+-induced waves 
on the fura-2 fluorescence 
image of the ganglion cell 
layer. The second applica- 
tion of K+ occurs within the 
refractorv ~eriod of the tis- 
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compared to 100 ms) was used in the presence of curare in order to assure a strong depolarization. Scale 
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Fig. 5. Conductances acti- A R . . - 
vated in retinal ganglion cells t Control 
during a wave. (A) Spontane- Control SR95531 

ous compound PSC record- 
ed in a single ganglion cell 
held at -60 mV and at +30 +30 ,v 
mV in the absence and pres- 
ence of 50 pM SR95531, a 
GABA, antagonist. (B) Sum- 
mary plot of the IV character- 

""'ir*" Y 
20 PA L 

istics of the periodic com- 1 S 

pound PSCs in the absence (0) and presence (0) of the 50 pM SR95531. The Integrated current 
magnitude of the integrated current recorded from each cell is normalized to (normalized) 
the average value recorded for that cell at V,, = -60 mV. Each point corresponds to the normalized 
magnitude recorded at a given holding potential averaged across cells (in control ACSF, 56 compound 
PSCs were recorded at six different holding potentials between -70 mV and +30 mV in seven cells; in 
SR95531,85 compound PSCs at eight different holding potentials from nine different cells). The error bars 
correspond to the standard deviation. 

on cells receive direct cholinergic and 
GABAergic inputs, but that only the cho- 
linergic inputs are required for the wave 
generation (23). 

In adult and developing retinas of many 
vertebrates, the only source of ACh is found 
in a subclass of amacrine cells, known as the 
starburst amacrines (24). These starburst 
amacrines make synaptic connections with 
ganglion cells (1 6,  25, 26) and with other 
amacrines (26, 27), and they contain and 
co-release ACh and GABA (28). The cells 
that supply the cholinergic inputs to the 
ganglion cells in retinas of newborn ferrets 
were identified by immunohistochemical 
staining for choline acetyltransferase 
(ChAT) (29). Retinal whole mounts im- 
munostained for ChAT revealed a uniform 

mosaic (Fig. 6A) of amacrine cells, con- 
firmed in sectioned retinas (Fig. 6B) by the 
presence of a bistratified immunostained 
population, with one layer of cell bodies in 
the amacrine cell layer and the other dis- 
placed into the ganglion cell layer. The 
processes of the cells form two distinct stra- 
ta in the inner-plexiform layer. This char- 
acteristic bistratified distribution and small 
soma size of the ChAT-positive cells is 
diamostic of the starburst amacrines. - 

Our results indicate that early in devel- 
opment ganglion cells and cholinergic am- 
acrine cells participate in a functional syn- 
aptic network that produces the retinal 
waves. Experimentally, waves could be in- 
duced by depolarization by means of activa- 
tion of nAChRs, whereas curare blocked the 
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spread of excitation away from a site of 
depolarization. These observations imply 
that the propagation of retinal waves re- 
quires synaptic transmission mediated by 
the cholinergic amacrine cells. Several 
models. not necessarilv mutuallv exclusive. 
have been proposed fdr the wa; in which 
the waves might spread in a network of 
ganglion and amacrine cells (30). In an 
"amacrine-propagated" model, excitation 
could spread directly between amacrine 
cells (not all of which need even be cho- 
linergic) and then could be "read-out" by 
ganglion cells via cholinergic inputs. In this 
model. at least some amacrine cells also 
must express nAChRs because in the pres- 
ence of curare, all increases in [Ca2+], in 
amacrine cells are abolished (3 1 ). In a feed- 
back model, excitation could be relayed 
from amacrine to ganglion cells (by cholin- 
ergic transmission) and then back to other 
amacrine cells (or ganglion cells) by gap 
junctions that, on the basis of tracer cou- 
pling studies, are presumed to be present 
between ganglion and amacrine cells at 
these ages (32). Although our observations 
imply that cholinergic synaptic transmis- 
sion is required for wave propagation, it 
could possibly also participate in wave ini- 
tiation. Because, in the presence of curare, 
all changes in [Ca2+], in amacrine and gan- 
glion cells are abolished, either ACh is 
required-possibly released spontaneously 
from a small subset of amacrine cells-or 
some other process that induces a change in 
[Ca2+], below our detection limit is neces- 

Fig. 6. Ferret retina irnrnunostained for choline- 
acetyltransferase (ChAT) observed with Nornarski 
optics. (A) P2 ferret retina whole mount. (B) Trans- 
verse section through a P8 ferret retina. Abbrevi- 
ations: acl, amacrine cell layer; gcl, ganglion cell 
layer; and VZ, ventricular zone. Scale bar, 50 Frn 
for both (A) and (B). 

sary to initiate a wave. 
The spontaneous activity in the retina 

generates action potentials that are sent to 
other structures in the visual svstem (33) . , 

and may be critical for development of vi- 
sual system circuitry (8, 34). Proposed mod- 
els imply that the spatio-temporal pattern, 
not the overall level of activitv. is reauired , , 
for the development of these early circuits 
(35). In addition to providing near-neighbor 
correlations among cells in the same eye ( 6 ) ,  
the large but finite spatial extent of the 
wavefronts defining the domains and the 
long and variable interval between succes- 
sive waves within a  articular region of the - 
retina could also have functional signifi- 
cance for the patterning of connectivity 
more centrally. Moreover, the presence of 
correlated activity within the retinal circuits 
themselves could act in shaping local cir- 
cuits (9) ,  as has been postulated for the 
developing cerebral cortex ( I )  and spinal 
cord (3). Thus, although the cellular basis 
for generating the correlations appears to 
differ in detail, the nervous system can ap- 
parently use a variety of different strategies 
to generate correlated activity necessary for 
the shaping of precise circuitry. 
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thus, the Y chromosome can be used to 
determine patch size and tissue clonality, as 
in XX/XY chimeric mice (10). To investi­
gate clonality in the human intestine, we 
studied tissue from an XO/XY mosaic indi­
vidual of male phenotype who, by coinci­
dence, also had familial adenomatous pol­
yposis (FAP). This was a serendipitous dis­
covery, as the chance of finding such an 
individual is probably less than one in a 
hundred million. The clinical diagnosis of 
FAP was confirmed by mutation analysis of 
the patient's APC gene: A protein trunca­
tion test and subsequent sequence analysis 
(11) revealed a germline frameshift muta­
tion at codon 1309. The patient had under­
gone a prophylactic total colectomy at 32 
years of age, from which paraffin-embedded 
material was available. 

We first performed karyotyping and flu­
orescent in situ hybridization (FISH) (12), 
using the Y chromosome-specific probes 
cY97 and pDP105 (13), on the patient's 
peripheral blood lymphocytes (PBLs). 
These tests confirmed that he was a mosaic 
and also showed the Y chromosome to be 
dicentric. The karyotype was 45,X/46,X, 
dic(Y)(Ypter -> cen -> Yqll.23:: Ypll .3 
—> cen —» Yqll.23). FISH demonstrated 
that approximately 20% of the PBLs were 
XO. 

Nonisotopic in situ hybridization 
(NISH) (14) was then performed on histo­
logical sections of the small and large intes­
tine, with the use of the Y chromosome-
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It is widely accepted that tumors are monoclonal in origin, arising from a mutation or series 
of mutations in a single cell and its descendants. The clonal origin of colonic adenomas 
and uninvolved intestinal mucosa from an XO/XY mosaic individual with familial adeno­
matous polyposis (FAP) was examined directly by in situ hybridization with Y chromosome 
probes. In this patient, the crypts of the small and large intestine were clonal, but at least 
76 percent of the microadenomas were polyclonal in origin. 


