SHP-1 that in turn functions to inactivate
the kinase and negatively regulate TCR
signal transduction. Therefore, the kinase is
directly responsible for its own negative
regulation.
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Entorhinal-Hippocampal Interactions Revealed
by Real-Time Imaging

Toshio lijima,* Menno P. Witter, Michinori Ichikawa,
Takashi Tominaga, Riichi Kajiwara, Gen Matsumoto

The entorhinal cortex provides the major cortical input to the hippocampus, and both
structures have been implicated in memory processes. The dynamics of neuronal circuits
in the entorhinal-hippocampal system were studied in slices by optical imaging with high
spatial and temporal resolution. Reverberation of neural activity was detected in the
entorhinal cortex and was more prominent when the inhibition due to y-aminobutyric acid
was slightly suppressed. Neural activity was transferred in a frequency-dependent way
from the entorhinal cortex to the hippocampus. The entorhinal neuronal circuit could
contribute to memory processes by holding information and selectively gating the entry

of information into the hippocampus.

A number of mechanisms have been pro-
posed to underlie memory formation in the
central nervous system, including long-last-
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ing changes in synaptic efficacy (1) and
reverberation of activity in a closed loop of
excitatory neurons (2) as demonstrated in
the cerebellonuclear-pontonuclear system
(3). In the entorhinal-hippocampal system,
both mechanisms have been proposed to
underlie the significant contribution of this
system to learning and memory (4). The
hippocampus (5) is a crucial structure for
memory processes, and the closely associat-
ed entorhinal cortex (EC) likely executes a
specific role as well (6). Superficial layers of
the EC receive sensory inputs from parts of
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the association cortex and convey that in-  turned to the deep layers of EC, which may  information takes place (6), or to the super-
formation to the hippocampus. The output  return the information either to the associ- ficial layers of EC (7).

of the hippocampus is subsequently re-  ation cortex, where the long-term storage of Within a horizontal slice preparation,
A Fig. 1. (A) Real-time imaging of the spread of

neural activity in the entorhinal-hippocampal slice
(9) with 5 uM bicuculline added to the medium.
The time after the stimulation is indicated below
each image (in milliseconds). Optical recording
with fluorescence voltage-sensitive dye (70) was
made from the square area in (B), which included
EC and the hippocampus. The stimulating elec-
trode was placed between layers Il and lll. At 1.2
ms after stimulation, a spot of about 200 pm in
diameter was activated, the activity of which ex-
panded to a strip of about 1.4 mm by 0.7 mm in
the superficial layer in 4.8 ms (not shown). Neural
activity was encoded as pseudocolor and super-
imposed on the bright-field images. The length of
the color code bar corresponds to a 0.1% frac-
tional change in fluorescence signal. A fraction of
each optical signal, the amplitude of which was
below the maximum amplitude of background
noise, was not color coded. Reverberation was
observed only in horizontal slices obtained from
the ventral part of the rat brains, 2.4. to 3.0 mm
dorsal to the interaural plane. (B) Digitized image
of the counterstained slice in (A) (77). Abbrevia-
tions: DG, dentate gyrus; LEA, lateral entorhinal
area; MEA, medial entorhinal area; and S, subic-
ulum. (C) An optical signal (lower trace) recorded
by a pixel over a part of MEA is compared to the
field potential (upper trace) obtained from the
same site simultaneously. The record was ob-
tained from a slice other than the one shownin (A)
and (B), but under similar conditions. (Supple-
ment) Reverberation of neural activity in EC and
transfer of activity from EC to the hippocampus.
The movie is available on Science On-Line (74).

Field potential
=== 60 ms

0.1%
0.4 mVv

Optical signal

Fig. 2. Real-time imaging of neuronal activity in the entorhi-
nal-hippocampal slice (9) superfused with normal solution.
Optical recording was made with the use of absorption dye
(70). Repetitive stimulation (1 Hz) was applied to the LEAata
position comparable to that illustrated in Fig. 1B. (A) Propa-
gation of activity after the first stimulus is restricted to super-
ficial and deep layers of LEA, with only minor spread into
MEA. (B) Propagation of activity after the seventh stimulus.
After 21.6 ms, activation enters the dentate gyrus, subse-
quently spreading along its transverse extent (32.4 ms). Ac-
tivity was almost stable up to 60 ms, after which a decline
occurred. Even after the second stimulus, the medial spread
of activity in EC was evident. The second through fifth stimuli
also resulted in weak and restricted activation of the dentate
gyrus. Only after the sixth and seventh stimuli was activation ; J j 304

apparent in the dentate gyrus along its transverse extent .

The length of the color code bar corresponds to a 0.05%

fractional change. (Supplement) Gating the entry of neural activity into the hippocampus, the movie is available on Science On-Line (74).
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large portions of the entorhinal-hippocam-
pal circuit are conserved (8). To reveal the
functional dynamics of this circuitry, we
visualized the propagation of neural activity
in slices (9) that followed entorhinal stim-
ulation through the use of voltage-sensitive
dyes and real-time optical imaging (10, I11).
Because the propagation of neural activity
in a slice can be suppressed by local inhib-
itory neurotransmission, we performed some
of the optical recordings in slices bathed in
bicuculline (1 or 5 wM) to partly suppress
the inhibition by +y-aminobutyric acid
(GABA)-containing inhibitory neurons.
Figure 1 shows the optical imaging of
the propagation of neural activities in a
horizontal slice of the rat brain containing
the EC and hippocampus (12). Before
stimulation, no spontaneous activity was
recorded by optical imaging. Focal neural
excitation in two of the superficial layers
(layers IT and III) of EC was evoked by a
single electrical stimulation (Fig. 1B). The
activity first spread laterally and medially
in the superficial layers and subsequently
led to activation of the deep layers (layers
V and VI). At 33.6 ms after EC stimula-
tion, activity invaded the hippocampus.

™/ Association cortex

Fig. 3. Model of neural circuits that may underlie
the propagation of neural activity in EC and the
hippocampus. The EC contains a closed neuronal
loop, including variable transverse and radial local
connections (79). One of the possible local circuits
corresponding to the activation patterns in Fig. 1 is
indicated by the solid line. Input-output pathways
link this network to the hippocampus and the as-
sociation cortex. Incoming sensory information
from adjacent association areas (gray arrow) influ-
ences the superficial layers of EC. By the perforant
path, this activity could be transferred to the hip-
pocampus. Resulting activity of the dentate gran-
ular cells will be transferred to CA3, CA1, and the
subiculum. In parallel, the incoming activity may
be held in the entorhinal reverberating circuit.
Eventually, processed information will enter the
entorhinal network (7). Over time, the repetitive
activation of the superficial and deep layers of EC
may lead to frequency-dependent multiple activa-
tions of the hippocampal formation; alternatively,
the EC could convey information to the associa-
tion cortex.
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Although activity of the hippocampus dis-
appeared around 151.2 ms after the stim-
ulation, EC remained active. During the
next 200 ms, the activity reverberated at
least twice along the medial-to-lateral axis
of EC. During this period, the hippocam-
pus showed only partial and weak activa-
tion. The next excitation of EC, which
began at 352.8 ms, again induced activa-
tion of the hippocampus. The excitation
that appeared laterally in the deep layers
of EC moved medially, and at about 386.4
ms, transfer to the superficial layers oc-
curred. Subsequently, activity entered the
hippocampus and remained present for
about 70 ms. During that same period,
activity reverberated once more in EC and
ceased after 500 ms (13). This pattern of
activation can be viewed in real time in
Science On-Line (14). Based on calcula-
tions from these data, the conduction ve-
locity in each layer ranges from 0.04 to

0.09 m/s (15).

A single stimulus applied to EC resulted -

in several reverberatory waves in EC. In
only two of the reverberations, activity in-
vaded the hippocampus. Neurons in the
superficial layers of EC, which send their
axons to the hippocampus, are under strong
local inhibitory control, which can be over-
come by higher frequency stimulation (16).
[t is possible that reverberation leads to
repetitive stimulation, which overcomes
the inhibitory component that is still
present in the slice (17). This hypothesis
was tested by application of a 1-Hz stimulus
to the superficial layers of LEA of slices
bathed in normal solution (without
GABA , antagonists). The first stimulus re-
sulted only in restricted activation in lateral
entorhinal area (LEA) (Fig. 2). After the
seventh stimulus, marked spread of activity
into the medical entorhinal area (MEA)
and into the whole of the dentate gyrus was
observed.

The movement of the activity as imaged
in entorhinal-hippocampal slices can be ex-
plained by the interaction of at least two
circuits, one constituting a reverberating
entorhinal circuit and the other connecting
the EC with the hippocampus (Fig. 3). The
reverberating circuit is driven not only by
activation of the superficial layers, which
are the major recipients of multimodal sen-
sory inputs (7), but also by hippocampal
output from CA1 and the subiculum to the
deep layers of EC (18).

The present findings have at least two
functional implications. First, the presence
of reverberating circuits indicates that EC
may hold information for a certain period of
time. Second, by selectively gating informa-
tion flow, entorhinal circuits may subserve
spatial and temporal integration of entorhi-
nal activity before information is conveyed
to the hippocampus.
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TAB1: An Activator of the TAK1 MAPKKK in
TGF-p Signal Transduction
Hiroshi Shibuya, Kyoko Yamaguchi, Kyoko Shirakabe,

Akane Tonegawa, Yukiko Gotoh, Naoto Ueno, Kenji Irie,
Eisuke Nishida, Kunihiro Matsumoto*

Transforming growth factor-B (TGF-B) regulates many aspects of cellular function. A
member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, TAK1,
was previously identified as a mediator in the signaling pathway of TGF-B superfamily
members. The yeast two-hybrid system has now revealed two human proteins, termed
TAB1 and TAB2 (for TAK1 binding protein), that interact with TAK1. TAB1 and TAK1 were
co-immunoprecipitated from mammalian cells. Overproduction of TAB1 enhanced ac-
tivity of the plasminogen activator inhibitor 1 gene promoter, which is regulated by TGF-3,
and increased the kinase activity of TAK1. TAB1 may function as an activator of the TAK1

MAPKKK in TGF-B signal transduction.

The mitogen-activated protein kinase
(MAPK) pathway is a conserved eukaryotic
signaling module that converts receptor sig-
nals into various outputs. This pathway in-
cludes three protein kinases: MAPKKK,
MAPKK, and MAPK; MAPK is activated
through phosphorylation by MAPKK,
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which is first activated by MAPKKK (1). A
member of the MAPKKK family, TAK1
(TGF-B~activated kinase 1), that functions
in the signaling pathway of TGF-B super-
family members has been identified (2).
TGF-B signals through a heteromeric com-
plex of type I and type II TGF-B receptors,
which are transmembrane proteins that
contain cytoplasmic serine- and threonine-
specific kinase domains (3). However, little
is known at the molecular level of the sig-
naling mechanism downstream of the
TGE-B receptors.

To analyze the TAKI1-dependent path-
way that functions in TGF-f signal trans-
duction, we used the yeast two-hybrid sys-
tem (4) to search for proteins that directly
interact with TAKI. Yeast cells were co-
transformed with a TAK1 expression vec-
tor, encoding the LexA DNA binding do-
main fused to TAK1 (5), and plasmids con-
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17. Evenin the presence of bicuculline (1 to 5 uM), mem-
brane depolarizations were generally followed by
long-lasting hyperpolarizations, which implies that the
inhibitory system is not fully suppressed. In normal
solution, stimulus frequencies of 1 Hz and higher can
overcome the local inhibition (76). Thus, with a partial
suppression of inhibition, the reverberating circuit at
0.1 Hz might be sufficient to overcome inhibition, re-
sulting in activation of the perforant pathway.

18. Insimilar preparations, stimulation of either CA3 or the
subiculum led to activation of the deep layers of EC
and subsequent reverberating activity. Also, direct
stimulation laterally in the deep layers of LEA resulted
in the spread of activity in the deep layers to MEA,
subsequent spread into superficial layers of MEA, fol-
lowed by activation of the reverberating circuit.
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taining human brain ¢cDNA expression li-
brary clones fused to DNA encoding the
GAL4 activation domain (GAD). Twenty-
six positive clones encoding two distinct
proteins, named TAB1 and TAB2, were
obtained from ~1 X 10° transformants.
The GAD fusion proteins expressed by the
two classes of library isolates will be referred
to as GAD-TABl and GAD-TAB2. To
localize the regions in TAK1 responsible for
interaction with TAB1 and TAB2, we ex-
amined a set of LexA-TAKI deletion chi-
meras in two-hybrid assays (Fig. 1A). These
studies revealed that TAB1 and TAB2 in-
teract with the NH,- and COOH-terminal
domains of TAK1, respectively.

Proteins that interact with TAK1 may
include both upstream regulators and down-
stream targets. If either TAB1 or TAB2 has
a role in the activation of TAK1, one would
expect that co-expression with TAK1 would
influence the activity of the latter in yeast.
We developed an in vivo system for assaying
mammalian MAPKKK activity in the yeast
pheromone-induced MAPK pathway (2, 6).
An activated form of TAK1 (TAKIAN) is
able to substitute for Stellp MAPKKK ac-
tivity (7). Expression of full-length TAKI,
however, fails to rescue the stel I A mutation,
suggesting that yeast cells do not possess an
activator of TAK1 (2). With the use of the
yeast MAPK pathway, both GAD-TABI
and GAD-TAB2 constructs were tested for
their ability to complement the stel IA mu-
tation in the presence of TAKI. Co-expres-
sion of GAD-TAB1 with TAKI rescued the
Stel1p deficiency, whereas GAD-TAB2 had
no effect (Fig. 1B). These results indicate
that TABI augments the activity of TAK1.

To determine whether TABI increases
TAKI1 activity in yeast cells, we trans-
formed cells expressing or not expressing
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