
or SYP im~nunoprecipitates,  and the  re- 
sulting levels of p52"H phosphorylatiotion 
were visualized by anti-phosphotyrosi~le 
i~nmunoanalysis (Fig. 4 ,  A and B). Both 
i~nmunoprecipitated SYP and CTLA-4-  
associated SYP showed signiticant phos- 
phatase activity toward p52s'ic. Thus ,  we 
have identified p52"H as a substrate for 
t he  CTLA-4-associated SYP. These  find- 
ings l ink SYP, through its ability to  de- 
phosphorylate p52"'", as a negative regu- 
lator of the  R A S  pathmray. 

In the ahsence of CTLA-4, tyrosine kinase 
activity and tyrosine phosphorylation levels of 

p5ZSH" and CD3< are significantly increased 
in T cells. W e  sho\v here that tyrosine-phos- 
phorylated 0 3 6  recruits p52"H-GRB2 
complexes and that MAPK activity is elevat- 
ed. These findings suggest that the RAS path- 
way is constitutively activated in Ctla-4-'- T 
cells. SYP appears to be involved in mediating 
signals for a number of different surfiace mol- 
ecules, such as hematopoietic (1 7) and growth 
factor receptors (1 6-1 8). Unlike the hemato- 
poietic receptors, gri>\vth tactor receptors typ- 
ically contain cytoplasmic tyrosine klnase do- 
mains that are autophosphorylated and acti- 
vated after ligand stilnulatioll (1 8) .  Activa- 
tion of the platelet-derived growth tactor 
receptor (PDGFR) has been shown to result 
In the binding and phosphorylation of SYP, 
with the subsequent formation ot  SYP-GRB2 
complexes (18).  Even though in the case of 
PDGFR, the phosphorylation of SYP corre- 
lates with its ability to bind GRB?, we found 
no evidence of SYP tyrosine phosphorylat~on 
in activated mutant or wild-type T cells. 

Several reports have shown that associ- 
ation of the phosphatase S H P  with recep- 
tors such as CD22 in B cells, the  erythro- 
poietin receptor, and the  natural killer cell 
inhibitory receptor p58 abrogates signaling 
from both the  B cell and erythropoletin 
receptors, respectively, and negatively reg- 
ulates the ability of activated natural killer 
cells to mediate cytotoxicity (13 ,  14, 19) .  
Analogous to the ability of these receptors 
to recruit S H P  in order to abrogate cellular 
tunctions, we hypothesize that a tunction 
for CTLA-4 is t o  recruit SYP and that the 
major role of SYP is to down-regulate T cell 
activation. 
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Direct Regulation of ZAP-70 by SHP-1 in T Cell 
Antigen Receptor Signaling 

David R. Plas, Robin Johnson, Jeanette T. Pingel, 
R. James Matthews, Mark Dalton, Garbifie Roy, 

Andrew C. Chan, Matthew L. Thomas* 

The threshold at which antigen triggers lymphocyte activation is set by the enzymes that 
regulate tyrosine phosphorylation. Upon T cell activation, the protein tyrosine phos- 
phatase SHP-I was found to bind to the protein tyrosine kinase ZAP-70. This interaction 
resulted in an increase in SHP-I phosphatase activity and a decrease in ZAP-70 kinase 
activity. Expression of a dominant negative mutant of SHP-1 in T cells increased the 
sensitivity of the antigen receptor. Thus, SHP-I functions as a negative regulator of the 
T cell antigen receptor and in setting the threshold of activation. 

A dynamic balance between positlve and 
negative regulatory mechanisms is impor- 
tant in setting and nlaintaining the  thresh- 
old at  which ligands trigger signal transduc- 
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Medical nsttute Center for lmmunolog)~ and the Depart- 
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'To whom corresoondence should be addressed. 

tion. W i t h  regard to the  T cell antigen 
receptor ( T C R ) ,  changes in tyrosine phos- 
phorylation are responsible for initiating 
signal transduction events. Both S R C  fam- 
ily members and ZAP-70 are responsible for 
the  initial changes in tyrosine phosphoryl- 
ation (1 ). Equally important, but less well 
~~nder s tood ,  are the  mechanisms that nega- 
tively regulate signal transduction. T h e  
SHP-1 protein, a S R C  homology 2 (SH2)- 
containing intracellular protein tyrosine 
pl~osphatase (previously termed SHP,  S H -  
PTP1, P T P l C ,  or H C P )  has been implicat- 
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ed in the negative regulation of many im- 
munoreceptors (2-4). We sought to deter- 
mine whether SHP-1 functions to negative- 
ly regulate the TCR. 

SHP-1 is expressed in thymus and T 
cells, and in situ hybridization of thymic 
sections with an antisense SHP-1 comple- 
mentary RNA (cRNA) indicates higher ex- 
pression of SHP-1 in the thymic medullary 
area compared with the cortex (5). To ex- 
amine the role of SHP-1 in TCR signaling, 
we transiently transfected the T cell lym- 
phoma cell line Jurkat with either wild-type 
SHP-1 or a mutated SHP-1 cDNA called 
SHP-l(C453S) in which the active site 
cysteine (C) at position 453 was mutated to 
serine (S) (6). This mutation rendered the 
protein catalytically inactive. Simulta- 
neously, cells were transfected with a re- 
porter construct of luciferase driven by the 
interleukin-2 (IL-2) promoter as an indica- 
tor of activation. Cells were stimulated by 
either a monoclonal antibody (mAb) clo- 
notypic for Jurkat TCR (C305), phorbol 
myristate acetate (PMA), or a combination 
of both. Cells transfected with catalytically 
inactive SHP-1 (C453S) were more sensi- 
tive to stimulation through the TCR in 
conjunction with PMA (Fig. 1A). The in- 
creased IL-2 promoter activity is notable 
especially given that only a proportion of 
the cells express the SHP-1 (C453S) protein 
in a transient transfection assay. To exam- 
ine changes in tyrosine phosphorylation 
upon stimulation of the TCR, we estab- 
lished Jurkat cell lines that stably express 
SHP-1 (C453S) (6). Expression of the dom- 
inant negative SHP-l(C453S) resulted in 
cells that had increased tyrosine phospho- 
rylation in response to anti-TCR (Fig. 1B). 
This indicates that expression of catalyti- 
cally inactive SHP-1 blocks the negative 
regulation of tyrosine kinases associated 
with the TCR. 

We confirmed these findings by trans- 
fecting a T cell hybridoma reactive to an 
allelic variant of hemoglobin (7) with ei- 
ther SHP-1, SHP-1 (C453S), or vector 
DNA alone (6). When compared with cells 
overexpressing wild-type SHP-1 or with 
cells transfected with vector alone, T cell 
hybridomas expressing the SHP-l(C453S) 
protein had an increased sensitivity to an- 
tigen (Fig. 1C). Cells transfected with ei- 
ther SHP-1 or SHP-l(C453S) cDNAs 
overexpressed the protein approximately 
10-fold (Fig. ID). The expression of the 
TCR was unchanged in the cells expressing 
either SHP-1 or SHP-l(C453S) as deter- 
mined by flow cytometric analysis (5) .  The 
T cell hybridoma transfected with cDNA 
encoding wild-type SHP-1 did not display a 
shift in the dose response curve, suggesting 
that overexpression of wild-type SHP-1 
does not affect TCR signaling. Thus, cata- 
lytically inactive SHP-1 can interfere with 

1174 

wild-type SHP-1 function and is involved 
in setting the threshold of antigen receptor 
signaling by antagonizing positive regulato- 
ry mechanisms. 

SHP-1 is a cytosolic enzyme regulated by 
an allosteric mechanism involving the SH2 
domains (8-11). Peptides that bind to 
SHP-1 SH2 domains increase phosphatase 
activity (3, 10). Negative regulation of cy- 
tokine receptors by SHP-1 involves a direct 
binding of the SH2 domains to the ty- 
rosine-phosphorylated cytoplasmic domain 
of the receptor (4, 12). Negative regulation 
of the B cell antigen receptor (membrane 
immunoglobulin) by SHP-1, at least in part, 
is mediated by binding to either CD22 or 
Fcy receptor type IIB (FcyRIIB) through 
anchoring, colocalizing, and activating 
SHP-1 in proximity to the antigen receptor 
(3, 13). 

To determine whether SHP-1 interacts 
with and dephosphorylates components of 
the TCR signaling complex, we performed 
coexpression studies using a vaccinia ex- 

pression system. HeLa cells were transfected 
with a cDNA encoding a fusion protein of 
the extracellular domain and transmem- 
brane portion of vesicular stomatitis virus G 
protein, and the cytoplasmic domain of the 
TCR ( chain (G-{), p59h", and ZAP-70 
and either SHP-1 or SHP-l(C453S) (Fig. 
2A) (14). Cells expressing SHP-1 had re- 
duced tyrosine phosphorylation of G-( and 
ZAP-70, even in the presence of similar 
p59h" kinase activity. These experiments 
do not eliminate the possibility that SHP-1 
may regulate SRC family member kinase 
activity but indicate that SHP-1 can de- 
crease the tyrosine phosphorylation state of 
ZAP-70 and G-(. This suggests that SHP-1 
can negatively regulate TCR signaling. We 
confirmed this observation by infecting Sf9 
insect cells with baculovirus encoding the 
kinase domain of p56"k, ZAP-70, and 
SHP-1 (14). Expression of SHP-1 decreased 
ZAP-70 phosphorylation and kinase activ- 
ity (Fig. 2B). 

The coexpression studies in HeLa and Sf9 

A PMA + 6 
ionomycin -4 

PMA I) 
Unstimulated 4 ~EPSFFV 1 

* t , . : : . ,  

0 20 40 60 80 100 
O h  Maximum stimulation 

Fig. 1. SHP-1 functions as a negative regulator of 
TCR signal transduction. (A) Jurkat cells were 
transiently transfected with the reporter construct 
plL-2 luciferase and cDNAfor SHP-1, catalytically 
inactive SHP-1 (C453S), or a vector control (18). 
Cells were then stimulated with PMA, PMA and 
ionomycin, anti-TCR (mAb C305), or a combina- 

tion of PMA and anti-TCR and harvested 6 hours after stimulation. Cell lysates were measured in 
duplicate for luciferase activity. Average luciferase activity is presented as percent of maximum stimula- 
tion achieved with PMA and ionomycin after subtraction of background. The data shown are represen- 
tative of six independent experiments. (B) A Jurkat clone J.neo transfected with the vector control, lanes 
1 to 3 (6), and a Jurkat cell clone with stable expression of SHP-1 (C453S), J.SHP-I CIS 213, lanes 4 to 
6, were stimulated with anti-TCR and harvested immediately (time 0) (lanes 1 and 4), 3 min (lanes 2 and 
5), and 7 min (lanes 3 and 6) later. Cell lysates from equal cell numbers were separated on an SDS- 
polyacrylamide gel and immunoblotted with anti-phosphotyrosine (antibody 4G10). Molecular sizes are 
indicated on the right in kilodaltons. (C) The 3L2 T cell hybridoma reactive to mouse hemoglobin(64-76) 
(Hb) was transfected with either cDNA for SHP-1, catalytically inactive SHP-l(C453S), or vector control 
(neo) (6). Three individual clones were examined for each transfection and stimulated with increasing 
concentrations of hemoglobin peptide for 24 hours. Supernatants were measured for IL-2 production 
with a CTLL proliferation assay. Results shown are representative of five separate experiments. (D) 
Overexpression of SHP-1 and SHP-1 (C453S) in the 3L2 T cell hybridoma. SHP-1 protein amounts for the 
individual clones were determined by immunoblot analysis of cell lysates with an antiserum to the SHP-1 
SH2 domain. 
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cells suggested that SHP-1 and ZAP-70 in- 
teract upon T cell activation. To address this 
question, we stimulated Jurkat cells by either 
cross-linking the TCR or by treatment with 
pervanadate, and the ability of SHP-1 and 
ZAP-70 to interact was measured by coim- 
munoprecipitation (Fig. 3A) (15). No inter- 
action between SHP-1 and ZAP-70 was seen 
in unstimulated cells. However, activation of 
T cells by either TCR cross-linking or per- 
vanadate stimulation resulted in the associ- 
ation of SHP-1 and ZAP-70. Immunoblot 
analysis indicated that ZAP-70 was tyrosine- 
phosphorylated, identifying ZAP-70 as a ty- 
rosine-phosphorylated protein that coimmu- 
noprecipitates with SHP-1. Thus, after T 
cell activation SHP-1 and ZAP-70 can in- 
teract, which leads to the recruitment and 
negative regulation of the kinase. 

To define the region by which SHP-1 
interacts with ZAP-70, we mixed Jurkat T cell 
lysates from cells stimulated with pervanadate 
with GST fusion proteins of either the tan- 
dem SHP-1 SH2 domains or the SHP- 
l(C453S) phosphatase domain (Fig. 3B). 
Both the SHP-1 SH2 domains and the cata- 
lytically inactive phosphatase domain bound 
ZAP-70. We interpret this data to indicate 
that a tyrosine phosphorylation site within 
ZAP-70 interacts with SHP-1 SH2 domains. 
Because catalytically inactive phosphatases 
can form complexes with their substrates (16), 
it is likely that the catalytically inactive phos- 
phatase domain of SHP-1 forms a complex 
with ZAP-70 because ZAP-70 is a substrate of 
the phosphatase. This suggests a possible mo- 

lecular mechanism by which catalytically in- 
active SHP-l(C453S) could function as a 
dominant negative mutant. 

SHP-1 in its native state has low cata- 
lytic activity, which can be increased by 
peptides that bind to the SH2 domains (3,  
8, 10). Although the interaction between 
SHP-1 and ZAP-70 results in decreased 
ZAP-70 tyrosine phosphorylation and ki- 
nase activity, it is possible that there is a 
reciprocal relation in that the interaction 
also results in increased SHP-1 phosphatase 
activity. We determined whether interac- 
tion with ZAP-70 serves to increase phos- 
phatase activity by mixing SHP-1 with a 
fourfold molar excess of purified ZAP-70 or 
purified ZAP-70 that had been previously 
phosphorylated and activated by the p56"k 
kinase domain (Fig. 4). Interaction between 
ZAP-70 and SHP-1 increased phosphatase 
activity (1 7). The phosphatase activity was 
further increased when ZAP-70 was phos- 
phorylated by p56"k. ZAP-70 that had not 
been incubated with p56kk kinase was also 
phosphorylated, but to a much lesser ex- 
tent. It is unlikely that the increase in 
phosphatase activity is due to phosphoryl- 
ation of SHP-1 because the assay is per- 
formed in the absence of ATP. A CD22 
phosphotyrosyl-containing peptide that 
binds to the NH,-terminal SHP-1 SH2 do- 
main was required at a 100-fold molar ex- 
cess to achieve similar activation (5) .  Thus, 
on a molar basis, ZAP-70 is a more potent 
stimulator of phosphatase activity than are 
phosphotyrosyl peptides. 

Band Il l  + L In vltro klnase 

ZAP-70 + AntCUP-70 

-- - lmmP"--m 
Fig. 2. SHP-1 is a negat~ve regulator of ZAP-70. (A) HeLa 

7 8 9 cells were transfected with a chimeric protein of VSV G 
protein extracellular and transmembrane doma~n, and SHp-'r 

InWHR1 the ~ntracellular domain of 6 chain (G-[). ZAP-70, and 

10 11 12 
~ 5 9 ~ "  and eelther SHP-1 or SHP-1 (C453S) (14, 19). Anti- 
G-i (lanes 1 to 31 and anti-ZAP-70 (lanes 4 to 91 immu- 

0 .  

In vWro klnrm noprecipitates were immunoblotted with antibody to 
phosphotyrosine (anti-pTyr) (lanes 1 to 6) and anti-ZAP- 

13 14 15 70 (lanes 7 to 9). Transfected HeLa cells were examined 
by flow cytometry to verify equal expression of G-5 on 

cells (5). SHP-1 and SHP-1 (C453S) expression was determined by SHP-1 immunoprecipitation followed 
by immunoblot analysis (lanes 10 to 12). ~ 5 9 ~ "  activity was determined by an in vitro kinase reaction 
(lanes 13 to 15). Control lanes represent mock-transfected HeLa cells. (B) Sf9 insect cells were infected 
with recombinant baculovirus encoding a fusion protein of glutathione S-transferaseZAP-70 (GST-ZAP- 
70), lane 1; GST-ZAP-70 and p56ICk kinase domain [LCK (K)], lane 2; or GST-ZAP-70, LCK (K), and 
SHP-1, lane 3 (74, 19). GST-ZAP-70 was isolated on glutathione agarose and subjected to either 
immunoblot analysis or a kinase reaction. Top panel, anti-pTyr immunoblot; middle panel, in vitro kinase 
assay with Band I l l  as an exogenous substrate: bottom panel, anti-ZAP-70 immunoblot. 

Our data show that the interaction be- 
tween SHP-1 and ZAP-70 increases phos- 
phatase activity with a concomitant de- 
crease in kinase activity, suggesting that T 
cell activation is controlled by an autoreg- 
ulatorv  loo^. The activation of the ZAP-70 , . 
tyrosine kinase results in the recruitment of 

Fig. 3. SHP-1 associates with ZAP-70 upon T cell 
activation. (A) Jurkat cells unstimulated (lanes 1, 
4, 7, and 9), stimulated for 2 min with anti-TCR 
(lanes 2,5, and 8), or stimulated with pervanadate 
(lanes 3,6, and 10) were lysed as described (75, 
20) and immunoprecipitated with antiserum to 
SHP-1. Samples were immunoblotted with either 
anti-ZAP-70 (lanes 1 to 3), antiSHP-1 (lanes 4 to 
6), or anti-pTyr (lanes 7 to 10). (B) GST fusion 
proteins of either the SHP-1 SH2 domains or the 
SHP-l(C453S) phosphatase domain, or GST 
alone were added to lysates from untreated (-) 
(lanes 1 to 3), peroxide-treated (lanes 4 to 6) or 
pervanadate-treated cells (lanes 7 to 9). Glutathi- 
one agarose beads were added, collected, and 
washed (75). The resulting proteins were eluted, 
resolved on an 8% SDS-polyaclylamide gel, and 
analyzed for ZAP-70 by immunoblot. PTPase, 
protein tyrosine phosphatase. 

Basal -F: : 1 
0 0.5 1 1.6 2 2.5 3 

Fold stimulation 01 SHP-1 phoephatam actMty 

Fig. 4. Tyrosine-phosphorylated ZAP-70 activates 
SHP-1 phosphatase. Purified phospholylated (P- 
ZAP-70), or unphospholylated ZAP-70, was mixed 
with SHP-1 in a 4:l molar ratio. Phosphatase ac- 
tiivlty was determined with p-nitrophenylphosphate 
as a substrate (1 7). The fold increase in activity is 
compared with the activity of SHP-1 alone. Prepa- 
rations of ZAP-70 or phosphorylated ZAP-70 con- 
tained negligible phosphatase activity. 
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SHP-1 that in turn fi~nctions to inacti~rate 
the kinase and negatively regulate TCR 
signal transduction. Therefore, the kinase is 
directly responsible for its own negative 
regulation. 
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Entorhinal-Hippocampal Interactions Revealed 
by ~ e a l - ~ i m e  Imaging 

Toshio lijima," Menno P. Witter, Michinori Ichikawa, 
Takashi Tominaga, Riichi Kajiwara, Gen Matsumoto 

The entorhinal cortex provides the major cortical input to the hippocampus, and both 
structures have been implicated in memory processes. The dynamics of neuronal circuits 
in the entorhinal-hippocampal system were studied in slices by optical imaging with high 
spatial and temporal resolution. Reverberation of neural activity was detected in the 
entorhinal cortex and was more prominent when the inhibition due to y-aminobutyric acid 
was slightly suppressed. Neural activity was transferred in a frequency-dependent way 
from the entorhinal cortex to the hippocampus. The entorhinal neuronal circuit could 
contribute to memory processes by holding information and selectively gating the entry 
of information into the hippocampus. 

A n i ~ ~ n h e r  of mechanisms ha\-e heen pro- ing changes in synaptic efficacy ( 1 )  and 
posed to underlie memor\- formation in the re\~esberation of activity in a closed loop of 
central nerl-oils system, including long-last- excitatory neurons (2 )  as demonstrated in 

the cerebellonuclear-po~ltonuclear system 
T. i ima,  M, Ichikawa T. To~niraqa. G. Matsumoto. Mo- ( 3 ) .  111 the e~~torhinal-hi~~~oca111pal system, 
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ecuarand ~ e l l u l a r ~ e u r o s c ~ e r c ~ ~ e c t ~ o n .  Eectrotechn hotll mecllaIlislns have heell to 
c a  Laborato~y, 1-1-4 U rezo ro .  Tsukuba, barak 305. 

I~~~~ i~nderlie the si,qnificant contribution of this 
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R. Kaj!wava, nforlnaL,or Science, ~ o h o k u  Uriversity, ed entorhinal cortex (EC) likely executes a 
Serda 980. Japar. specific role as \yell (6). Superficial layers of 
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