
a 
Gdgi extract 
only 

b Gdgi extract + 
NSF and a-SNAP 
(ATP + EDTA) 

c Golgi extract + 
NSF and a-SNAP 
(ATP + Mg2+) 

1 2  3  4 5 8 7 8 9 1 0 1 1 1 2 1 3  

Fraction number 
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1 2 3 4  1 2 3 4 5  

- NSF - Heavy chain - a-SNAP - tight chain - p2a 

Fig. 4. p28 is part of the 20s Golg~ SNARE com- 
plex. (A) Golgi extracts were incubated without (a) 
or with (b and c) NSF and a-SNAP in assembly (a 
and b) or disassembly buffer (c) and then separated 
on a 15 to 40% glycerol gradient. Gradient frac- 
tions were analyzed for the distribution of p28 by 
protein immunoblotting. BSA ( 4 , s )  and a,-mac- 
roglobulin ( 2 s )  were used as sedimentation stan- 
dards. (B) The p28-containing 20S fractions were 
immunoprecipitated with mAb against p28 (a) or a 
control rnAb (b) under the assembly condition. The 
immunoprecipitates were incubated in assembly 
(lanes 1 and 3) or disassembly buffer (lanes 2 and 
4). The eluates (lanes 3 and 4) and the beads (lanes 
1 and 2) were resolved by SDS-PAGE along with 
100 ng of a-SNAP and NSF (lane 5) and then an- 
alyzed for the presence of NSF, a-SNAP, and p28 
through the use of immunoblotting. 

20s complex to be around 1 to 2 : 1 :3 to 4 
by comparing the result shown in Fig. 4B 
with standard curves of each protein in 
immunoblotting analysis, consistent with 
the observation that a - S N A P  functions as 
a monomer whereas NSF acts as a ho- 
motrimer (15). p28 is thus a core compo- 
nent  of the Golgi SNARE complex that 
participates in the docking or fusion stage 
of ER-Golgi transport (or both). Accord- 
ingly, we have renamed this protein GS28 
(Golgi SNARE with a size of 28 kD). 
Because the primary sequence of GS28 is 
not significantly related to other known 
SNAREs, GS28 may represent a member 
of a distinct class of SNAREs that func- 
tion in vesicle docking or fusion (or both). 
A n  unknown protein of 28 k D  has been 
shown to be a component of the Golgi 
SNARE complex in yeast (16). Whether  
this yeast protein is related to GS28 awaits 
molecular characterization. 
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Vertical Flux of Biogenic Carbon in the Ocean: 
Is There Food Web Control? 

Richard B. Rivkin,* Louis Legendre, Don Deibel, 
~ e a n - ~ r i c  Tremblay, Bert Klein, Kenneth Crocker, Suzanne Roy, 

Norman Silverberg, Connie Lovejoy, Fabrice Mesple, 
Nancy Romero, M. Robin Anderson, Paul Matthews, 

Claude Savenkoff, Alain Vezina, Jean-Claude Therriault, 
Joel Wesson, Chantal Berube, R. Grant lngram 

Models of biogenic carbon (BC) flux assume that short herbivorous food chains lead to 
high export, whereas complex microbial or omnivorous food webs lead to recycling and 
low export, and that export of BC from the euphotic zone equals new production (NP). 
In the Gulf of St. Lawrence, particulate organic carbon fluxes were similar during the spring 
phytoplankton bloom, when herbivory dominated, and during nonbloom conditions, when 
microbial and omnivorous food webs dominated. In contrast, NP was 1.2 to 161 times 
greater during the bloom than after it. Thus, neitherfood web structure nor NP can predict 
the magnitude or patterns of BC export, particularly on time scales over which the ocean 
is in nonequilibrium conditions. 

Between  30 and 50% of the CO,  released tion (PP) (1-3). T h e  downward flux of BC 
from fossil fuel is removed from the atmo- from the ocean surface can be estimated 
sphere and exported from the ocean sur- directly from particulate organic carbon 
face to depth as dissolved inorganic car- (POC) accumulation in sediment traps (2, 
bon and BC derived from primary produc- 4, 5 )  or assessed indirectly (5-7) from 
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season,ll changcs in  Jissol\-cd nutrients or 
p s e s  (silcli as N O 3 ,  O:, and CO:) or in 
-'T~I/"~L! d i s ~ ~ i ~ i l i b r i ~ ~ ~ n ,  or from N O 3  
uptake rates ( p N O , )  or  the  f r a t i o  (8).  T h e  
temporal anil spatial patterns of PP, N P ,  
and BC export have becn characterized for 
various coastal and oceanic regions (4 ,  5 ) ,  
and tlie relation bctwccn food wcb struc- 
ture and direct or  proxy indicts of export 
has been niodeled (9-1 1 ) .  Thesc  food wcb 
~llociels predict that  n h e n  large phyto- 
p lankton are abundant ,  licrbivorous tro- 
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phic p,ltl~\vays don i i~ la t e  anid N P ,  j ratios, 
anil R C  export will be high; wlhen small 
phytoplankton arc a l~uni lant ,  microbial 
trophic pathways generally clominate and 
N P ,  f ratios, anid RC export will bc l o ~ v  
(1 3-1 3) .  W e  tcstcJ thebe toad vvch modcls 
in the  Gulf of St .  L,l\vrence (Fig. 1 )  by 
concurrently assessing thc  structilre of the  
pelagic food \vcti and determining BC 
fluxcs b ~ -  direct and inLlirect methods. 

T h e  food web structure diffcrcil sienif- 
icantly d i~ r ing  and aftcr the  spring phyto- 
p lankton bloom (Tablc  1 ) .  I n  April ,  clilo- 
ronhl-11 a concentrations ( to ta l  anid >5  

L ,  

(*.m), s ~ n a l l  heterotroplhic nanotlagcl1,~te 
( H N A N )  abunL1ances, p K 0 3 ,  j ratio., ancl 
rates of primary production and bacteri,ll 
growth L Y C ~ C  high, and b,lcterial ,~nd ciliate 
abunda~nces and the  ratio of e u ~ h o t i c  :one 
respiration to  primary production (R:P) 
mere loa. (14 ) .  T h e  ~netabol i rm of the  gi~lf  
was autotropliic (15) .  D u r ~ n g  tlic hloom, 
crus tacem m ~ s o r o o ~ l a n l c t o n  were herhiv- 
orous ancl preferentially ingestecl large 
( > 5  (*.m) particles (1 6, 17 ) .  In  late June,  
c1iloroph~-11 a concentrations ( to ta l  , ~ n d  
> 5  (*.in), H N A N  al~unclances, p N O j ,  j 
ratios, and rates of primary p r o ~ l i ~ c t i o n  and 
13ncterial gron.th were generally low, anc1 

bacterial and ciliate abundances and R:P 
ratios were relatively high. T h e  metabo- 
lisin of the  gulf was heterotroplhic (15 ) .  
During this postbloom period, the  micro- 
bial fooil web was well de\-eloped, anid 
crustacean meso:ooulankto~~ were Drcsum- 
ably omnivoroils, ingesting nonchloro- 
p l ~ y l l o ~ ~ s  prey of suitable size, such as het -  
erotroPhic dinoflagellates anil ciliates 
(18 ) .  

Fluxes of chlorophyll a ( 19)  and meso- 
;oopl ,~nkton fecal pellets (20) from tlie 
euphotic zonc \!-ere 1 .2  to  21 (mcan  = 

8.4) times greater anid 2.2 to 5.6 (mean  = 

Fig. 1. Gulf of St. Lawrence study site and sta- 
tions St., station. 

Table 1. Euphotic zone (1Yc soume)  values for selected physical and values [per square meter] divided by euphotic zone depth [in meters]). New 
biological characteristics during bloom ( I  0 to 22 April 1994) and nonboom production !/,!as computed as in (8) from f ratios and ()NO,. The W~coxon's 
(13 to 24 June 1994) periods. Sampling locations and analytical protocols signed rank test was used to assess differences between stations during 
are in Fig. 1 and (141, respectively. Except a s  noted in (74), rates and different seasons (asterisk ir?dicates P 5 0.05: NS, not significant: ND, not 
standing stocks are euphotic zone averages (euphotic zone integrated determined). 

Bloom Nonbloom 
Station Significance 

1 2 4 5 1 2 4 
test 

5 

0.4 0.4 0 .5  0.1 3 .5  2.1 1 .7  2 9 Euphotic zone stability-(ut ,,.F,, - nt,.= ,,,, It 
Euphotc zone depth (m) 26 33 3 1 17 30 54 33  1 3  NS 
Total chlorophyll a (mg m-2) 2 1 2.9 0.6 7.6 0 .4  0.1 0.4 1 3  
Chlorophyll a > 5  pm 57 8 1 53  95 18 13  0.2 62 
POC (mg m-,I 215 196 150 530 287 140 232 386 N S 
PON fmg m-,I 37 38 25 101 5 1 30 51 75 NS 
PP fmg of C m-3 day-') 21 0 72 4 1 222 7 3 11 16 
PP > 5 1p.m (30) N D 99 49 100 30 9 12 43  
NO, uptake (pNO,: pmo  m -"ay ') 2075 882 174 2796 46 8 2  147 87 
f ratio 0 85 0.73 0 55 0.78 0 16 0 0 7  0 4 5  0.09 
New production fmg of C m-Vay-  ) 178 ,164  5 3 . 7 0  2 3 , 1 4  173:219 1 1 : 3 . 7  0 . 2 , 0 6  4 9 . 1 1  1 . 4 ; 6 8  

[PP x f ratio. (pNO, x 79.211 
New production: POC flux ratio 3 2 : 2 9  1 4 . 1 8  4 ; 6  3 6 ; 4 6  0 2 , 0 . 7  0 . 1 ; 0 . 4  1 .3 .3 .1  0 . 1 , 0 . 5  

[PP X irato:POC, (pNO, X 79.2):POCl 
Bactefial abulidance (1 0 cells m-2) 3 8 1 9  3 5  5.2 1 2 9  3 8 9 1 17 3 
Bacterial gro\uth rate (day - )  0 55 0.42 0 42 0.48 0 12 0 21 0 3 3  0.19 
Bactera~phytopankton biomass ratio (C C) 0 1 1  0.16 0 2 3  0 04 2 04 1.09 0.99 0.58 
Respiration:PP (C.C) 0.05 0.14 0.17 0.10 1 . 3  1 6  0.7 1.1 
Ciliates (cells ml--) 0.1 0 6 0.4 1 .8  5 .3  2 3 6.8 4.2 
Heterotrophc dinoflagellates i c e s  ml- .) 4.5  5 .9  1 5 11 1 30 0 1 7  2.8 3.7 N S 
HNAN 1 5  pni (cells ml--) 13.0 6 2  1 6  12.0 <0 1 1 2  1 0 1  1 0 . 1  
HNAN > 5  pni (cells ml-I) 1 .0  1 0 1  0.2 0 .6  1 3 2  0 2 2 9 9 .9  
Bacterial grazing mortality ( d a y ' )  0.61 ND 0 52 0 48 0 06 ND 0.12 0.08 
Mesozooplankton biomass 6.9 0 9 2.0 ND 2 0 2 2  13.1 2.6 N S 

500 to 2000 p,m (g m-') 

i u t  s the densty of seavvater defned as s p e c f ~ c  gra\wty at temperatllre n degrees Celsi.~s - 1 I s 1 0 0  

1164 SCIENCE \ L3L 171 24 h I A i  1'196 



3.5) times smaller, respectively, during 
than after the phytoplankton bloom (Fig. 
2). In contrast, fluxes of POC and partic- 
ulate organic nitrogen (PON) were similar 
in the two seasons. Euphotic zone export 
of BC computed from f ratios and pNO, 
(8) was 1.2 to 161 (mean = 52) times 
greater in April than in June, and the 
resultant NP:POC flux ratio was 4 to 46 
(mean = 23) during the bloom and 0.1 to 
3.1 (mean = 0.8) after the bloom (Table 
1). Although we assume that BC export 
can be estimated from POC collected in 
surface-tethered sediment traps, because 
of collection and hydrodynamic bias, par- 
ticle fluxes computed from traps data may 
be 1.1 to 3 times greater than those pre- 

dicted by 234Th profiles (3, 21). 
In Fig. 3, we propose a conceptual mod- 

el of food web control of BC export. Dur- 
ing the bloom, large phytoplankton are 
abundant (Table 1) and mesozooplankton 
are primarily herbivorous (1 6). There is a 
large downward flux of aggregated phyto- 
plankton and a moderate flux of mesozoo- 
plankton fecal pellets (Fig. 2). A t  low 
ambient temperatures, the growth of cili- 
ates is depressed and their abundances are 
low (22). Top-down grazing control on 
small (<5 pm) HNAN by ciliates is weak, 
hence HNAN are abundant. In general, 
only small HNAN ingest bacteria, where- 
as larger HNAN are predominantly her- 
bivorous (23). Although bacterial growth 

/ I  m Bloom U Postbloom 1 

Chlorophyll a POC PON Fecal pellets 

Fig. 2. Downward fluxes of chlorophyll a, POC, nitrogen (PON), and fecal pellets (19). 

rates are high, bacterial abundances are 
low because mortality caused by the graz- 
ing of numerous small HNAN equals or 
exceeds bacterial growth rates. During 
substrate addition studies, bacterial 
growth was not stimulated by micromolar 
additions of glucose or glutamate (24), 
which suggests that ambient concentra- 

uu 

tions of substrate did not limit bacterial 
growth. The observed high growth rates 
were sustained by dissolved organic carbon 
(DOC) released by phytoplankton, by 
sloppy feeding by mesozooplankton, and 
by the production of DOC and dissolved 
organic nitrogen (DON) as byproducts of 
micro- and mesozooplankton metabolism 
(25). After the bloom, large phytoplank- 
ton are scarce (Table 1) and mesozoo- 
 lankt ton are ~rimarilv omnivorous and 
ingest nonchlorophyllous prey such as 
large flagellates and ciliates (18). The 
downward flux is dominated by fecal pel- 
lets (Fig. 2). A t  the relatively high seawa- 
ter temperatures (22), ciliates' growth 
rates may exceed their grazing mortality. 
Because of the top-down grazing control 
by the abundant ciliates, small HNAN are 
scarce (Table 1). Hence. des~ i t e  slower . - 
growth rates, bacteria accumulate because 
grazing mortality is <SO% of their growth 
rate. Substrate addition studies (24), in 
which bacteria were stimulated by gluta- 
mate but not glucose, suggest that DON or 
NH, limited bacterial growth. Mesozoo- 
plankton abundances were not significant- 
ly different in mid-April and late June 
(Table I), and it is likely that the release 

A Phytoplankton bloom B Postbloom 
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Fig. 3. Conceptual model of the interactions between food web structure and text. Solid and shaded arrows denote fluxes of particulate and dissolved 
BC export in the Gulf of St. Lawrence during and after the spring phytoplank- organic material, respectively. Wide arrows and bold type represent large 
ton bloom. The interactions, based on Table 1 and Fig. 2, are discussed in the fluxes and high standing stocks, respectively. 



rate o t  LJOK aanil K H ,  by crustacean me- 
sozooylankt~>n lvai insutticient t o  s ~ ~ s t a i n  
high bacterial gron.th ratea. This  conclu- 
sion ii consistent with a n  approximately 
t~vofold greater ~ l i t r ~ g e l l  aas~1nilat1011 etti- 
clency of copepocls when 1nge.itlng non-  
c1~loroph~-l l~ous  pre)- (9P to 99%1). such as 
c ~ l ~ a t e s ,  t han  n-hen feedllle on pl1\-to- 
plankton (35 to h??b) ( 2 6 ) .  

011s reiults, n.111~11 contrait  1vit11 h o d  
n e l ~  moilel predictions ot gener~l1)- higher 
B C  export  h)- l-ierh~vorous than  microl11,ll 
fooil ne1.i (9-1 I ) ,  suggest that:  (1) T h e  
seasonal progression trom a n  autcltrophic 
tci a heterotrophic pelagic fi>ocl lye13 \\.as 
accomraniecl the  rerlacemcnt of the  
sire class occ11p1ecl by large ph\-toylankton 
in .+I1?nl n.it11 1,irge dlnof ldei la tes  and cil- 
late? in Tune. This  enahlei1 mesorcior1,ink- 
ton to  shift fro111 herblvory, n-hen large 
yhytoplankton \\.err abundant, ti1 om- 
nil-or\-, when the  ~ n i c r o l ~ i a l  fi>oii u-eb ilonl- 
~ n a t e d  (18 ) .  (11) P O C  ancl P O K  export 
n-ere similar i l u r~ng  the  bloom, \\,hen p11)-- 
tciplankton and herbivorous grazing path- 
\va)-s i iom~nate i l ,  and during nonl?loom 
conclitloni, n h e n  r?lanktonic heterotronhs 
and m~crobia l  pat1lna)-i donlinated ( I  3 ) .  
There  \vas a c o n c o m ~ t a n t  cl~al-ice In the  
flux composition anel relati1.e c lom~nance 
trom chlcSrophyllo~~s material 111 April  t o  
k c a l  pellets 111 June.  ( i i i)  In  April ,  P O C  
export wai <1Q% o t  primary proi iuct~on,  
and in June  it \vas 12 to  3 j 0 % o .  Thus ,  in 
iolne circumstances, he t e ro t roph~c  iyi- 
terns can  export more b iogen~c  cCirbon, 
relative to primar\- procluctlon, t han  can 
a u t o t r o p h ~ c  7)-stems. ( ~ r - )  The re  were iig- 
n ~ t ~ c a n t  ciiscrepancies hetxveen BC export 
computed as K P  (8) and that  determined 
directly as P O C  In sediment traps. Part of 
this cl1screpancy- may- he due to  fluxes o t  
LJOC cluring the  spring hloom (3 ,  27). 
Thus ,  estllnating export of BC from pNO, 
or f ratlos aiiessed over short  (for in i tance ,  
ieasonal) time icalei (28 ) ,  or for systems 
\vhich are not  111 a steady i ta te ,  may be 
iubject to large unce r t a~n t i e i  (8 ,  9,  29). 
W e  co~lc lude that  BC export can be ~ncle- 
pendent  of the  trophic [node ( 1  3 )  o t  the  
plankton, anLl neither food \vel~ structure 
nor observational scale estimates of N P  
(8) can be used to  preiilct t he  magnitucle 
or pattern o t  B C  export froin the  ocean 
surface. 
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