natural mechanism of aggregation.

The problem of the optimal path, for
which C,, is a minimum, has been solved
exactly in two dimensions in the context of
domain walls in random ferromagnets and
directed polymers in a random medium
(16). The Hurst exponent H = %. For
directed, self-affine river basins, the values
of T and h can readily be deduced to be %
and %5, respectively. These values are robust
and do not change even if the minimization
of the energy functional includes both di-
rected and undirected networks (16).

For 2 = vy < 1, heterogeneities in the
erosional properties are irrelevant, and the
exponent values are the same as their homo-
geneous counterparts. Qur proof relies on
first observing that Min E < L'"2¥ (Min E
= 3 ksy for the tree for which 3sY is a
minimum, but ZksY = kMY =~
kL I+ 2y where k™ is the largest of the k,
values) and then using Eq. 9 in conjunction
with Eq. 3 to show that H = 1. Because H >
1 is not physically meaningful, the Hurst
exponent remains unchanged at H = 1.

We have thus shown that OCNs with 12
= vy = 1 show three classes of behavior
(Table 1). Our results indicate that the
OCN, in its present form, does not describe
the behavior of river basins. Rinaldo and
co-workers (6) have carried out numerical
studies of the y = Y4 case. Their work,
which was restricted to the statistics of local
minima (and not the global minimum, as in
our analysis), yielded exponents different
from our results but in good accord with
observational data.
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Predatory Dinosaurs from the Sahara and
Late Cretaceous Faunal Differentiation
Paul C. Sereno,* Didier B. Dutheil, M. larochene,

Hans C. E. Larsson, Gabrielle H. Lyon, Paul M. Magwene,
Christian A. Sidor, David J. Varricchio, Jeffrey A. Wilson

Late Cretaceous (Cenomanian) fossils discovered in the Kem Kem region of Morocco
include large predatory dinosaurs that inhabited Africa as it drifted into geographic
isolation. One, represented by a skull approximately 1.6 meters in length, is an advanced
allosauroid referable to the African genus Carcharodontosaurus. Another, represented by
a partial skeleton with slender proportions, is a new basal coelurosaur closely resembling
the Egyptian genus Bahariasaurus. Comparisons with Cretaceous theropods from other
continents reveal a previously unrecognized global radiation of carcharodontosaurid
predators. Substantial geographic differentiation of dinosaurian faunas in response to
continental drift appears to have arisen abruptly at the beginning of the Late Cretaceous.

Major continental areas became increas-
ingly isolated during the Late Cretaceous as
non-avian dinosaurs underwent their final
radiation. The influence of continental
fragmentation on dinosaur evolution during
this interval has remained uncertain be-
cause of uneven sampling of the fossil
record. Late Cretaceous dinosaurian re-
mains have been recovered principally from
Asia and western North America and con-
sist largely of coelurosaurian predators and
ornithischian herbivores (1). Although di-
nosaur bones of Late Cretaceous age have
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been reported from all major southern land
areas including Antarctica (2-12), reason-
ably complete skeletons have been recov-
ered only from South America (13), where
abelisaurid predators and titanosaurian her-
bivores flourished.

On continental Africa, the most com-
plete remains of Late Cretaceous dinosaurs
were discovered in Egypt and include the
lower jaw and vertebrae of an unusual fin-
backed theropod, Spinosaurus (3); skull frag-
ments and bones of another large theropod,
Carcharodontosaurus (4); isolated bones of a
third predator, Bahariasaurus (5); and bones
of a large titanosaurian sauropod, Aegypto-
saurus (6). In beds of similar age in Moroc-
co, several bones of an enigmatic sauropod
Rebbachisaurus were discovered (7). Phylo-
genetic interpretation of these remains
(14-17) has been difficult because many of
the bones are fragmentary and because the
Egyptian collection was destroyed during
World War II (18).

We describe here new vertebrate re-
mains from Late Cretaceous beds in the



Kem Kem region of southeastern Morocco
(Fig. 1, A and B). The fossiliferous horizons
are exposed along the face of an escarpment
formed by a carbonate platform of Late
Cenomanian through Turonian age (19).
The beds beneath the platform have been
divided informally into a lower red sand-
stone unit (grés rouges infracénomaniens) and
an upper marly unit (mame wversicolores a
gypse) (20). This general description, how-
ever, only characterizes the underlying beds
in the Kem Kem region (21).

We informally recognize this distinct,
nonmarine deltaic facies as the Kem Kem
beds, which can be divided equally into two
units that together attain a maximum
thickness of approximately 200 m (Fig. 1C)
(22). Nonvertebrate and vertebrate remains
have been recovered, the latter preserved
largely as disarticulated elements (23). Nine
elasmobranch species strongly support a
Cenomanian age for the deposit [circa (ca.)
93 million years ago (Ma)] (24). Dinosaurs
are represented by several theropods, at
least two sauropods, and a large iguanodon-
tian (25).

These fossils include a relatively com-
plete theropod skull lacking the lower jaws
(Fig. 2, A and B) (26) and a partial skel-
eton of a second theropod (Fig. 3). Ap-
proximately 1.6 m in length, the skull
equals or exceeds the length of the largest
known skull of Tyrannosaurus rex (27).
The maxilla has sockets for 14 blade-
shaped teeth, the crowns of which are
diagnostic in shape and ornamentation
(Fig. 2C). The posterior margin of the
crown is only slightly recurved and be-
comes convex toward the crown tip. On
both sides of the crown, arcuate enamel
wrinkles curve toward the marginal serra-
tions and often extend across the crown as
low bands (Fig. 2C). These dental features
allow reference of the skull to Carchar-
odontosaurus saharicus (28), a species based
originally on isolated teeth from western
Algeria (7) and later represented by cra-
nial fragments and postcranial bones from
Egypt (4, 5) and teeth from Niger (9),
Tunisia (10), and Sudan (11).

The cranium tapers anteriorly in side
view and is narrow in dorsal view (Fig. 2, A
and B). The antorbital fenestra is excep-
tionally large (30% of skull length), and
pneumatic extensions of the antorbital fossa
open into the surrounding bones (maxilla,
nasal, lacrimal, and jugal). The protruding
ventral margin of the fossa, the sculptured
surface of the maxilla, and the rugose nasals
also characterize the Egyptian cranial ele-
ments, which are associated with postcra-
nial bones (4, 29). The stout, strongly opis-
thocoelous cervical vertebrae of C. sahari-
cus are diagnostic and have low neural
spines, robust transverse processes, and ex-
ceptionally broad, keeled centra (Fig. 2D).

Cladistic analysis of basal tetanurans
places Carcharodontosawrus within the allo-
sauroid clade (Fig. 4A) as recently suggested
(17), allying it closely with Acrocanthosau-
rus from the Albian of North America (30)
and Giganotosaurus from the Albian or
Cenomanian of South America (31). Char-
acters that unite these taxa as carcharodon-
tosaurids include a broad orbital shelf
(formed by the lacrimal and postorbital
bones) and the squared anterior end of the
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lower jaw. In Carcharodontosaurus and Ac-
rocanthosaurus, the cervical centra are par-
ticularly broad, and the anterior caudal ver-
tebrae have small pleurocoels.

The new fossils also include a partial
skeleton, several bones of which (the cora-
coid, femur, and fibula) are identical to
bones referred to the Egyptian species Ba-
hariasawrus  ingens  (5). These Egyptian
bones, however, are not part of the holo-
typic specimen of B. ingens, which is based
on other fragmentary postcranial elements
(32). Therefore, we designate the Moroc-
can skeleton as the holotype of a new thero-
pod, Deltadromeus agilis, gen. nov., sp. nov.,
to which we refer several of the Egyptian
bones (33).

The limb bones in Deltadromeus are re-
markably slender. Length/diameter ratios
are similar to those in the smaller cursorial
coelurosaur Ornithomimus and are only 50
to 60% of the diameter of those in the
equal-sized allosauroid Allosaurus (Table 1).
The plate-shaped coracoid and proximal
scapula in Deltadromeus are broader than in
other theropods that also show expansion of
the acromial region (therizinosaurids, tyran-
nosaurids, and deinonychosaurs). On the
basis of the preserved portions of the hu-
merus, radius, and ulna, the forelimb is not
substantially reduced in length. The curso-
rial proportions of the hind limb bones lie
between those for Allosaurus and Ornitho-
mimus (Table 1).

The phylogenetic analysis suggests that
Deltadromeus is an early derivative of the
coelurosaur radiation (Fig. 4A) and most
closely resembles the smaller Late Jurassic
taxon Onrnitholestes (34). Its status as a

Fig. 1. Late Cretaceous paleogeography and
principal exposures of the Kem Kem beds. (A)
Late Cretaceous (Cenomanian, 90 to 97 Ma) pa-
leogeographic map (Mollweide projection) with
latitude and longitude lines spaced at 30° intervals
(longitude greater than 120° not shown) (47).
White cross indicates fossil locality. (B) Maps
showing Morocco and the location of ribbon-
shaped exposures of the Kem Kem beds in south-
eastern Morocco. (C) Section of the Kem Kem
beds at Gara es Sbaa showing the erosional con-
tact below with Ordovician and Devonian strata
and a conformable contact above with the Ceno-
manian-Turonian limestone platform (brick pat-
tern). Sandstone (stipple) dominates the lower
unit, whereas mudstone (solid) increases within
the upper unit. Measurements are in meters. Sil-
houettes show the principal kinds of footprints in
the footprint zone (upper right) and the strati-
graphic level of the skull of Carcharodontosaurus
and skeleton of Deltadromeus (middle right). Pa-
leocurrent rose diagram (lower right) shows strong
northerly orientation of cross-stratification within
the lower unit of the Kem Kem beds (n = 43; mean
= N15°E). CT, Cenomanian-Turonian; P, Paleo-
zoic; S F M G, silt, fine-, medium-, and coarse-
grained sandstone; |, fossiliferous zone; I, foot-
print zone.
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coelurosaur is based on the expansion of
the coracoid, the reduction of the femoral
fourth trochanter to a low ridge, and the
presence of a large deep fossa on the prox-
imal end of the fibula (Fig. 3, E, G, and
H).

Late Cretaceous fossils from Africa are
critical for the establishment of biogeograph-
ic patterns toward the end of the Mesozoic.
During this time, an endemic fauna had
arisen in Asiamerica (central Asia and west-
ern North America) that consisted almost
entirely of coelurosaurian predators and or-
nithischian herbivores (1). A complementa-
ry Gondwanan dinosaurian fauna composed
of abelisaurid and spinosaurid predators and
titanosaurian sauropods has been described
(35) but has yet to be clearly established on,
and restricted to, southern continents other
than South America (15, 36).

The dinosaur remains from Morocco
support the following biogeographic con-
clusions:

1) During the Late Cretaceous, several
large theropods achieved a trans-African dis-
tribution. The Moroccan material indicates
that at least three large predators (Spinosau-
rus, Carcharodontosaurus, and Deltadromeus)
ranged across north Africa during the Late
Cretaceous (Cenomanian).

2) During the Early Cretaceous, large
carcharodontosaurid predators underwent a
global radiation. The close relations be-
tween Carcharodontosaurus (African), Acro-
canthosaurus (North American), and Gi-
ganotosaurus (South American) identify a
carcharodontosaurid radiation that had
achieved a transcontinental distribution be-
fore the end of the Early Cretaceous (ca.
100 Ma) (Fig. 4B). Carcharodontosaurus
may have been isolated on Africa during
the Cenomanian (ca. 90 Ma), as paleogeo-
graphic reconstructions suggest, but its car-
charodontosaurid progenitors were able to
colonize northern and southern landmasses
during the Early Cretaceous.

3) By the Late Jurassic, basal coeluro-
saurs had achieved a global distribution.
Deltadromeus and recent discoveries of ma-
niraptoran bones in Sudan and Argentina
(37) document the presence of coelurosaurs
on southern continents during the Late
Cretaceous. The early divergence of a lin-
eage that gave rise to Deltadromeus suggests
that primitive coelurosaurs were present on
southern continents before the close of the
Jurassic.

4) At the beginning of the Late Cre-
taceous (Cenomanian), a distinctive dino-
saurian fauna was present in Africa. Thus
far, only Africa has yielded Late Creta-
ceous spinosaurids, primitive coelurosaurs
like Deltadromeus, abundant small thero-
pods with simple blade-shaped teeth, and
a large iguanodontoid (25). Although
the sauropod Rebbachisaurus may share its
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closest relations with a South American
form (38), the Moroccan dinosaurian fau-
na is distinct from Cenomanian faunas
on South America and northern conti-

A

nental areas, where abelisaurids and tit-
anosaurs (South America) and hadrosaurs,
ankylosaurs, and deinonychosaurs (north-
ern continents) are dominant (39). It

Fig. 2. Cranium and maxillary tooth (SGM-Din 1) and postaxial cervical vertebra (SGM-Din 3) of C.
saharicus. Cranial reconstruction is shown in (A) left lateral and (B) dorsal views. Stippling indicates bone
preserved on at least one side of the cranium. (C) Maxillary tooth from cranium in left lateral view, with
magnified views of the posterior margin (right) and lateral surface (below). (D) Midcervical vertebra in (top)
left lateral and (bottom) posterior views. Scale bar in (A) and (B), 50 cm; in (C), 5 mm (above) and 1 cm
(below); in (D), 5 cm. Abbreviations: antfo, antorbital fossa; apo, accessory pneumatic opening; di,
diapophysis; f, frontal; j, jugal; |, lacrimal; ifo, lacrimal fossa; m, maxilla; mf, maxillary fenestra; n, nasal; nfo,
narial fossa; p, parietal; pa, parapophysis; pl, pleurocoel; po, postorbital; por, postorbital rugosity; poz,

postzygapophysis; and so, supraoccipital.

Table 1. Length and minimum diameter measurements (in millimeters) and ratios in D. agilis (SGM-Din 2),
Allosaurus fragilis (44), and Omithomimus sp. (Royal Tyrrell Museum of Palaeontology, Drumheller,
Alberta, Canada, uncataloged). Parentheses indicate estimation; dashes indicate missing information.

Bone Deltadromeus Allosaurus Ornithomimus
Length, diameter
Midcaudal centrum 130, 70 — —
Distal caudal centrum 130, 35 90, 28 —
Humerus (328), 22 310, 38 —
Femur 740, 53 850, 95 418, (46)
Tibia (700), — 690, 72 485, (35)
Metatarsal li 417, 20 270, 42 300, 25
Metatarsal lll 450, 22 327, 40 332, (16)
Metatarsal IV 400, 20 275, 36 311,25
Metatarsal V 100, 8 — 120, 7
Digit Il-phalanx 1 140 120 68
Digit ll-ungual 80 80 52
Digit lli-phalanx 1 140 110 —
Digit IV-phalanx 1 98 75 40
Digit IV-phalanx 1 98 75 40
Digit IV-phalanx 3 52 30 22
Digit IV-phalanx 4 37 29 21
Ratios
Humerus/femur (0.44) 0.36 —
Tibia/femur (0.95) 0.73 1.16
Metatarsal lll/femur 0.61 0.52 0.79
Metatarsal lli/tibia (0.64) 0.47 0.69

SCIENCE e VOL. 272 e« 17 MAY 1996



remains to be determined whetherAfrica’s
Cenomanian dinosaurian fauna persisted to
the end of the Cretaceous.

5) The Moroccan fossils suggest, in con-

Fig. 3. Skeletal anatomy of D. agilis (SGM-Din 2).
(A) Neural spines of anterior caudal vertebrae in
left lateral view. (B) Midcaudal vertebra in left lat-
eral view. (C) Midcaudal chevron in left lateral
view. (D) Skeletal reconstruction showing pre-
served bones (length of D. agilis approximately 9
m). (E) Scapulocoracoid and forelimb (composite
left and right) in left lateral view. (F) Pubic foot in left
lateral view. (G) Proximal left fibula in medial view.
(H) Proximal femur (reversed from right) in left lat-
eral view. (I) Tibia (reversed from right) in proximal
view (anterior toward top). (J) Distal tibia, astraga-
lus, and calcaneum (reversed from right) in ante-
rior view. (K) Left metatarsals Il to IV in anterior
view. (L) Left metatarsals Il to V in proximal view
(anterior toward bottom). Scale bar in (A), 5 cm
[also for (F), (G), (H), and (K)]; in (B), 5 cm [also for
0, ), and (L)}; in (D), 1 m; in (E), 10 cm. Abbrevi-
ations: ac, acromion; ap, anterior process; as,
astragalus; asp, ascending process; at, anterior
trochanter; ca, calcaneum; cc, cnemial crest;
dpc, deltopectoral crest; ff, fibular fossa; ft, fourth
trochanter; pp, posterior process; ra, radius; and
ul, ulna.

clusion, that substantial faunal exchange
between major land areas may have contin-
ued well into the Early Cretaceous. Marked
provincialism of dinosaurian faunas in
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Torvosauridae

North America, South America, and Af-
rica appears to have abruptly arisen early
in the Late Cretaceous, when dispersal
routes between northern and southern
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Table 2. Character state matrix for an outgroup (based on Eoraptor and Herrerasauridae), 14 ingroups, and 63 characters (45) used in a phylogenetic analysis
of basal tetanurans (Fig. 4) (42).

Characters
Taxa
10 20 30 40 50 60
Outgroup 00000 00000 00000 00000 07000 Q0700  OOOOO  ODOOO ~ OOOOO  OOOOO  OOOOO — OOOOO 00O
Ceratosauria 10000 00000 00000 00000  0?000 Q0000 00000  00OO0?  0OOOO  OOOOO 00000 00000 000
Afrovenator 11111 11111 11111 11111 107?77 07?00 70111 1?0??  007?? 07?000 0Q0?000 0?0?70 200
Torvosauridae 011?21 2177 10?11 11111 10??? 07?000 7?1111 111?20  ?20?0?  0?00? 00000  0?000 0?0
Spinosauridae 2771 2777 11777 29777 27777 12?7 17 17? ?27?7?  ?00?0  ?101? 0?70?7777
Sinraptoridae 11111 11271 11111 11111 11111 27011 10000 0?7?11 11111 00000 00000 00000 000
Cryolophosaurus 21777 1729277 27701 27?7 2071 0?7 2070 ?9M°? 12?211 01000  ?0?0?  0???? 207
Monolophosaurus 11?217 11?277 11277 M NN 2?7211 21?2?20 0?7?17 1??1? 11000 00000  0?0?0 0?7
Allosaurus 11112 11111 11111 11111 11111 11111 10000 00011 11111 11000 10000 000?70 100
Giganotosaurus 11277 20777 11127 127271 217977 2711 ?0000 0?7?71 ?0?7?  O0?114 1?0?? 07?000 107
Acrocanthosaurus 111172 11?211 21111 11721 111721 2?1?27 200?20 70711 07?07 01111 11111 00000  ?70
Carcharodontosaurus 11117 1?2177 27?2111 M 217277 77 2?0000 27?11 07?707 2?11?2111 0?0?77 200
Ornitholestes 11117 172171 11171 2?7771 11111 1?2711 2?0000  0000?  0?0?0 00000 00000 111721 110
Deltadromeus 2077 217?211 11111 127727 1?1727 27777 7 07777 277 2777 M1 211
Other coelurosaurs 111721 1111 1111 21102 1111 11111 10000 00000 00000 01000 10000 11111 111

land areas were finally severed and when
oceanic barriers had arisen between south-
ern continents.

1.
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proximal articular end). Allosauroidea (plus unre-
solved subgroups): 39, nasal participation in antor-
bital fossa; 40, excavated internal carotid artery ca-
nal; 41, basipterygoid processes very short; 42,
quadrate with broad articular flange for quadratoju-
gal; 43, palatine with flange-shaped process for lac-
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odontosauridae (plus included node): 48, broad
postorbital-lacrimal contact; 49, postorbital with
suborbital flange; 50, dentary with squared, expand-
ed anterior end; 51, pubic boot 30% of pubic length;
52, ventral extension of basisphenoid; 53, midcervi-
cal centra (posterior articular face) at least 20%
broader than tall; 54, elevation of anterior face ab-
sent in midcervical centra; 55, rudimentary caudal
pleurocoels. Coelurosauria (plus included node):
56, antorbital fossa anterior margin 40 to 50% of the
anteroposterior width of fossa; 57, ectopterygoid
pneumatic excavation subcircular; 58, caudal 15
and more posterior caudals with elongate prezyg-
apophyses; 59, coracoid postroventral process
length more than twice glenoid diameter; 60, ischial
obturator flange triangular; 61, pubic obturator
notch; 62, femoral fourth trochanter weak or absent;
63. fibular fossa occupying all of the medial aspet of
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Lead and Helium Isotope Evidence from
Oceanic Basalts for a Common
Deep Source of Mantle Plumes

B. B. Hanan and D. W. Graham

Linear arrays in lead isotope space for mid-ocean ridge basalts (MORBs) converge on a
single end-member component that has intermediate lead, strontium, and neodymium
isotope ratios compared with the total database for oceanic island basalts (OIBs) and
MORBs. The MORB data are consistent with the presence of a common mantle source
region for OIBs that is sampled by mantle plumes. *He/*He ratios for MORBs show both
positive and negative correlation with the 2°6Pb/2°4Pb ratios, depending on the MORB
suite. These data suggest that the common mantle source is located in the transition zone
region. This region contains recycled, oceanic crustal protoliths that incorporated some
continental lead before their subduction during the past 300 to 2000 million years.

Earth’s mantle is geochemically heteroge-
neous, but the origin, scale, and distribution
of chemical variations are uncertain. Anal-
yses of oceanic basalt isotope compositions
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seem to indicate mixtures of at least four
mantle components (1). Recently, another
mantle component located internal to these
four was identified on the basis of Sr-Nd-
Pb-He isotope data (2—4). Trends of Pb
isotope data for MORB suites converge on a
position internal to the global mantle com-
ponents and define a common end-member
for MORBs (5). Here, we show that the
MORB and OIB data define the same inter-
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