in temperature because of adiabatic com-
pression and expansion, which result in
warming during descent and cooling during
ascent, respectively. Evidence for changes
in the pattern of the mean meridional cir-
culation can be seen by comparing the tem-
perature changes (Fig. 3C) with the posi-
tions of the ascending and descending air in
the control run (shading in Fig. 3A). In the
middle troposphere, the cooling near 40°S
is caused by the southward departure of the
descending portion of the Hadley cell, and
the warming around 55°S is a result of both
the arrival into this region of the descend-
ing air and the southward movement of the
ascending portion of the Ferrel cell. The
latter then causes the extra cooling seen
near 70°S.

From these results, it is evident that the
vertical profiles of temperature change
vary strongly with geographical position.
The LvL (2) radiosonde data have also
shown (for the boreal summer) increases
at solar maximum in tropospheric temper-
ature at low and mid-latitudes but decreas-
es at some high-latitude stations. The tem-
perature changes estimated by LvL (3) for
Lihue, Hawaii (22°N, 159°W), averaged
over November—December and January—
February between extremes of the three
solar cycles occurring between 1959 and
1994 were compared with those calculated
for a near position (30°N, 145°W) in Jan-
uary in the present work (Fig. 4). Relative
to the observational data, the model pro-
file has a very similar structure but is
smaller in magnitude. Given that the
model has fixed sea surface temperatures
(such that the extra solar energy reaching
the surface is “lost”) and that the specified
ozone changes may be too low (15), an
underestimate of the solar effects is not
surprising. The only other station for
which LvL show data for the boreal winter
is Truk Island (7.5°N, 152°E); at this site,
the observations in the troposphere
showed much smaller changes in response
to the solar cycle, and the model results
likewise are not significantly different
from zero. In the stratosphere, both the
observations and the model show more
warming than at Lihue. [LvL (3) also con-
cluded that the shape of the temperature
change profiles is consistent with changes
in vertical motion.]

The model results suggest that increas-
es in stratospheric temperature in response
to enhanced solar irradiance result in
stronger summer easterly winds, which
penetrate into the tropical upper tropo-
sphere and force tropospheric circulation
patterns poleward. The model shows
changes in temperature, zonal wind, and
storm track position that are similar to,
although generally smaller than, those ob-
served. The solar-induced increase in
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stratospheric ozone is important in deter-
mining the change in lower stratospheric
temperatures and thus the subsequent cli-
mate response. There is no quasi-biennial
oscillation (QBO) in the model (in effect,
it is permanently in the easterly phase);
hence, the claim by LvL that the QBO
plays a role in modulating the impact of
solar variability on the winter lower
stratosphere cannot be tested. However, if
the strength of the zonal wind in the
tropical lower stratosphere plays an impor-
tant role in transmitting the solar effects
from stratosphere to troposphere, as sug-
gested by the present results, then it is
clear that modulation by the QBO is prob-
able. The results of the model also imply
that changes in stratospheric ozone
brought about by any other means may
have an impact on tropospheric climate.
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Universality Classes of Optimal
Channel Networks

Amos Maritan, Francesca Colaiori, Alessandro Flammini,
Marek Cieplak, Jayanth R. Banavar*

Energy minimization of both homogeneous and heterogeneous river networks shows that,
over a range of parameter values, there are only three distinct universality classes. The
exponents for all three classes of behavior are calculated.

River networks reflect fractal properties in
a power law distribution of various quanti-
ties (1). The striking generality of Horton’s
law of stream numbers (2) motivated
Shreve (3) to suggest that channel net-
works developed in the absence of geologic
controls are essentially topologically ran-
dom. Nevertheless, nonrandom river net-
works have been consistently observed.
Their existence has prompted the develop-
ment of models (2, 4, 5) of drainage net-
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work optimization based on the concept of
energy minimization and optimal channel
networks (OCNs) (6, 7). Computer simu-
lations of homogeneous OCNs (6) have
resulted in optimal networks with a striking
similarity to those observed in nature.
These results have raised the question as to
whether some form of global energy mini-
mization underlies the existence of fractal
structures., Here, we solve the OCN for a
range of parameters for both homogeneous
and heterogeneous basins. Although we do
obtain fractals, our exact results for the
power law exponents do not agree with
either the observational data or the com-
puter simulations. The disagreement be-
tween the results of our analytic solution
and the computer simulations (6) is a result
of the fact that the latter were only able to
access a set of local minima (which depend-



ed on the initial conditions and the dynam-
ics used) and not the true global minimum.

In computer models, the river network is
defined as a spanning, loopless tree on a
two-dimensional lattice of linear size L with
one global outlet. Each site of the lattice
has exactly one outlet bond to one of its
nearest neighbors. There are no restrictions
on the number of bonds into a site. The
area s; associated with any bond i is

$i = Esj-l-R,- (1)

where the sum is over each bond j that
inputs into i, and the rainfall R, (precipita-
tion) (8) at the ith bond is commonly as-
sumed to be independent of i and equal to 1.
Then, s, is equal to the number of sites
upstream of i connected by the network.
The OCN is obtained by choosing the net-
work that minimizes the energy functional

N
E= Dks (2)

i=1

where N is the total number of bonds, k; is
a quantity (assumed to be independent of i
and equal to 1 without loss of generality for
a homogeneous basin) related to soil prop-
erties such as the erodibility, and vy is an
exponent that characterizes the physics of
the erosional process. The quantity ksY, a
measure of the potential energy dissipated
in the ith bond, is a product of the water
flow and the elevation difference along the
bond in the associated landscape: the water
flow is proportional to s, and the elevation
difference is assumed to have an empirical
relationship with s; given by s¥™! (4).

Here we show that homogeneous basins
with 2 = vy = 1 fall into two universality
classes: the Scheidegger class (9) fory = 1
and mean-field-like behavior (10) for V2
= vy < 1. We then show the effects of
disorder or heterogeneity in k; on the scal-
ing behavior.

Consider a site on the lattice and a
subbasin comprising all sites upstream that
are connected by the network. This subba-
sin is typically anisotropic with a longitudi-
nal length § and a transverse length &, ~
En”, where i-l = 1 is the Hurst exponent.
Thus, the number of sites in the subbasin
scales as &' ™' Let p(s, L) be the probability
density distribution for a given bond to be
associated with an area s for a system of
linear size L. For the optimal network, as-

sume (7, 11, 12) that
p(s,L) = s""f(s/sp) (3)

where f(x) is a scaling function that is a
nonzero constant for small values of x and
zero for large values; sy sets the character-
istic scale below which the distribution of s
is algebraic with an exponent 7. Because £

~L

s~ LH—H (4)

and because the maximum area of the basin
is L, H = 1. The mean area (s) is equal to
the average distance to the outlet from the
sites, which is shortest for directed networks
(13). Generally, {s) scales as L%, where the
fractal dimension of the stream d, = 1, with

the equality holding for directed networks.
Thus

(s) = uds s p(s,L) ~L¢ (5)
1

and therefore
d=(1-+H)(2-n1) (6)

Hack’s law (14), relating the length [ of the
longest stream in the drainage region (mea-
sured from any site to the edge of the sub-
basin) to the drainage area s of the basin
(the number of upstream sites), [ ~ s", holds
with

d[

h 1+ H) (7
because the number of sites in the subbasin
scales as g‘”H and | ~ §. Thus, for direct-
ed, self-affine river basins, the wandering of
the river characterized by the Hurst expo-
nent uniquely determines several of the
other exponents.

The Scheidegger model (9, 10) is ob-
tained for homogeneous basins on choosing
k.= 1foralliand vy = 1 in Eq. 2. Mini-
mization of X5, over the ensemble of all
networks (directed and undirected) leads to
all directed networks being degenerate and
optimal because (1/L*)(35,) = {s), which is
a minimum and the same for all directed
networks. Because the path from a given
point to the outlet executes a random walk,
H = V2and d, = 1 (13) for the Scheidegger
model.

For the case V2 = vy < 1, the minimum
of the energy functional in Eq. 2 scales as

Min E ~ L% (8)

because Min E scales with a power greater
than or equal to 1 + 2+ and separately with
a power less than or equal to 1 + 2. The
lower bound is obtained by dividing the
sum in Eq. 2 into the sum over rows of sites
in the direction transverse to the flow and
the sum over sites within the rows and by

using the inequality 2X,Y > (2X)" for X, =
0. The upper bound results from an explicit
construction of classes of self-similar net-
works that satisfy the scaling E ~ L' *2¥. For
the optimal spanning tree, from Eq. 2

Min E ~ L*{s") 9)

Combining with Eq. 8 the scaling form of
Egs. 3 and 6, one obtains H(1 — ) = d, —
v, and thus, for 2 = v < 1 in the homo-
geneous case, H = 1 (which is consistent
with H = 1 only when H = 1), d, = 1, and
T =

Natural river basins are heterogeneous.
The simplest heterogeneity that one may
consider is random precipitation with R; no
longer uniform as in Eq. 1. Sites with large
s; have contributions from the R; of all the
upstream sites. Thus, small fluctuations in
R, would be expected to average out to yield
the homogeneous result. Indeed, an explicit
analysis (10) within the framework of the
Scheidegger model shows that the univer-
sality class is unchanged upon addition of
this kind of heterogeneity.

Now, consider the case in which erosion
is random, that is, the values of k; are random
and uncorrelated. In this case, we determine
the nature of the optimal spanning tree
(each site in a spanning tree has a unique
path to the global outlet) for which the
quantity 2 ks, (v = 1 in Eq. 2) is a minimum.
For any spanning tree, 2 ks, can be exactly
rewritten (15) as 2, C, with C, = Xk,
Here, C,, physically represents the cost of
the path from site m to the global outlet, the
sum over j runs over all bonds on the path,
and k; is the cost of traversing bond j. The
summation over m is a sum over the paths
originating from each of the sites. Indeed,
the factor s; in 2 ks, arises from the number
of paths passing through a given bond i. The
optimal spanning tree, for which = C, is
the lowest, is obtained if C, is a minimum
for each m. The minimization of all the
individual C’s can be effected simulta-
neously, and the resulting optimal spanning
tree is simply the union of all the optimal
paths from" each of the sites to the global
outlet. As an implication of optimality,
when two paths intersect they overlap exact-
ly the rest of the way to the outlet. Also, the
path from a site along another path coin-
cides exactly with the subpath of the original
path. Thus, the bond randomness provides a

Table 1. Summary of exponents for models studied and for river basins (7). The random erosion model
for 12 =y < 1 yields the same exponents as the homogeneous model (mean field).

) ) Random
Exponent Schem_iegger Mean field erosion River basins
vy=1 Vo =y <1 v =1
H Y2 1 %3 0.67 t0 0.92
T Y3 %2 /s 1.40to 1.46
h % V2 s 0.52 to 0.60
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natural mechanism of aggregation.

The problem of the optimal path, for
which C,, is a minimum, has been solved
exactly in two dimensions in the context of
domain walls in random ferromagnets and
directed polymers in a random medium
(16). The Hurst exponent H = %. For
directed, self-affine river basins, the values
of T and h can readily be deduced to be %
and %5, respectively. These values are robust
and do not change even if the minimization
of the energy functional includes both di-
rected and undirected networks (16).

For ¥2 = vy < 1, heterogeneities in the
erosional properties are irrelevant, and the
exponent values are the same as their homo-
geneous counterparts. Qur proof relies on
first observing that Min E < L'*2¥ (Min E
= 3 ksy for the tree for which 3sY is a
minimum, but Zksy = kMY o~
kLI 2Y ) where k™ is the largest of the k,
values) and then using Eq. 9 in conjunction
with Eq. 3 to show that H = 1. Because H >
1 is not physically meaningful, the Hurst
exponent remains unchanged at H = 1.

We have thus shown that OCNs with 12
= vy = 1 show three classes of behavior
(Table 1). Our results indicate that the
OCN, in its present form, does not describe
the behavior of river basins. Rinaldo and
co-workers (6) have carried out numerical
studies of the y = Y4 case. Their work,
which was restricted to the statistics of local
minima (and not the global minimum, as in
our analysis), yielded exponents different
from our results but in good accord with
observational data.
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Predatory Dinosaurs from the Sahara and
Late Cretaceous Faunal Differentiation
Paul C. Sereno,* Didier B. Dutheil, M. larochene,

Hans C. E. Larsson, Gabrielle H. Lyon, Paul M. Magwene,
Christian A. Sidor, David J. Varricchio, Jeffrey A. Wilson

Late Cretaceous (Cenomanian) fossils discovered in the Kem Kem region of Morocco
include large predatory dinosaurs that inhabited Africa as it drifted into geographic
isolation. One, represented by a skull approximately 1.6 meters in length, is an advanced
allosauroid referable to the African genus Carcharodontosaurus. Another, represented by
a partial skeleton with slender proportions, is a new basal coelurosaur closely resembling
the Egyptian genus Bahariasaurus. Comparisons with Cretaceous theropods from other
continents reveal a previously unrecognized global radiation of carcharodontosaurid
predators. Substantial geographic differentiation of dinosaurian faunas in response to
continental drift appears to have arisen abruptly at the beginning of the Late Cretaceous.

Major continental areas became increas-
ingly isolated during the Late Cretaceous as
non-avian dinosaurs underwent their final
radiation. The influence of continental
fragmentation on dinosaur evolution during
this interval has remained uncertain be-
cause of uneven sampling of the fossil
record. Late Cretaceous dinosaurian re-
mains have been recovered principally from
Asia and western North America and con-
sist largely of coelurosaurian predators and
ornithischian herbivores (1). Although di-
nosaur bones of Late Cretaceous age have
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been reported from all major southern land
areas including Antarctica (2-12), reason-
ably complete skeletons have been recov-
ered only from South America (13), where
abelisaurid predators and titanosaurian her-
bivores flourished.

On continental Africa, the most com-
plete remains of Late Cretaceous dinosaurs
were discovered in Egypt and include the
lower jaw and vertebrae of an unusual fin-
backed theropod, Spinosaurus (3); skull frag-
ments and bones of another large theropod,
Carcharodontosaurus (4); isolated bones of a
third predator, Bahariasaurus (5); and bones
of a large titanosaurian sauropod, Aegypto-
saurus (6). In beds of similar age in Moroc-
co, several bones of an enigmatic sauropod
Rebbachisaurus were discovered (7). Phylo-
genetic interpretation of these remains
(14-17) has been difficult because many of
the bones are fragmentary and because the
Egyptian collection was destroyed during
World War II (18).

We describe here new vertebrate re-
mains from Late Cretaceous beds in the





