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Selected Elastic Moduli of Single-Crystal 
Olivines from Ultrasonic Experiments 

to Mantle Pressures 
Ganglin Chen,* Baosheng Li, Robert C. Liebermann 

Ultrasonic interferometric measurements, developed for polycrystalline samples in a 
multi-anvil apparatus, were extended to single-crystal samples of San Carlos olivine 
and forsterite. The elastic moduli, C,, and C,, of San Carlos olivine and C,, of pure 
forsterite, were measured to about 13 gigapascals. These data on C,, for San Carlos 
olivine and C,, for forsterite are consistent with earlier measurements and extrapo- 
lations. The C,, for San Carlos olivine increases linearly as a function of increasing 
pressure, unlike the earlier nonlinear behavior observed at high pressure with impulsive 
stimulated scattering techniques. 

Unders tandlne  the dvnamlcs of Earth's man- 
tle depends crit~cally on  the models of ~ t s  
mineralogical and chemtcal composition ,IS a 
functlon of depth. Direct tnformation on  the 
composition comes from comparison of sels- 
mic proftles of the mantle with the sound 
veloctt~es of cand~date minerals measured In 
the laboratory. O l ~ v ~ n e  [(Mg,Fe)zSt04] 1s one 
of the major constituents of the upper mantle; 
thts mineral transforms to a p phase (wads- 
leylte) and a sptnal polymorph (ringwoodite) 
at the pressures and temperatures of the man- 
tle transition zone (410 to 660 km). The  
s~gnlf~cance of the sound veloctttes of olivine 
and its high-pressure polymorphs in the inter- 
pretation of the mantle composition has mo- 
tivated measurements on  this mineral to suc- 
cess~vely higher pressures. T h e  earliest ultra- 
sonic measurements were limited to pressures 
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below 1 GPa ( 1 ,  2).  These low-pressure data 
for olivine have been used to construct man- 
tle mtneralogical models (3). Webb (4) mea- 
sured the sound velocities of slngle crystals of 
San Carlos o l iv~ne [(Mg,, ,Fe,, l )LS i04]  in a 
11quid-medium pressure vessel to 3 GPa using 
ultrasonic interferometrv; she observed a 
s l ~ g h t l ~  nonlinear dependence of certain elas- 
ttc moduli (C,,) with pressure. Using impul- 
sive stimulated scattering (ISS), Zaug et al. (5 )  
measured the elasttc moduli of San Carlos 
olivine to 12.5 GPa in a diamond-anvil cell 
and observed a pronounced curvature in the 
variation of C,, as a function of tncreaslng 
pressure. Their data suggest that the P- and 
S-wave velocities of olivine at  a denth of 410 
km are lower than those calculated from the 
third-order finite strain extranolation of low- 
pressure elasticity data (3) .  

Recently, Dufh et al. (6 )  and Zha et al. (7) 
measured the sound velocities of single-crystal 
forsterite (MgLSi04) using Brillouin spectros- 
copy in a diamond-anvil cell; their results 
exhibit good agreement with those of Yoneda 

and Morioka (8) measured to 6 GPa. Neither 
of these studies indicated a nonlinear behav- 
ior of C5 versus pressure. However, the issue 
of whether this curvature exists for iron-bear- 
ing olivine is unresolved because Yoneda and 
Morioka and Duffy et al. used pure forsterite 
crystals; no  pure mode directions were mea- 
sured in the latter study (6).  , . , 

W e  report here the  results of  ultrasonic 
interferometric measurements o n  single 
crystals of both San  Carlos olivine and pure 
forsterite in a multi-anvil apparatus (9) .  
T h e  goals of these experiments were ( i )  to 
test the  feasibility of using this technique 
with single-crystal samples and (i i)  to un- 
derstand the behavior of the  C,, mode of 
olivinc under high pressure. W e  also report 
measurements for the  longitudinal mode 
C L 2 ,  for which there is good agreement 
between the  data of Webb ( 4 )  and those of 
Zaue et al. (5) .  

W e  measured the  acoustic travel times 
through the olivine and forsterite samnles 

u 

by ultrasconic interferometry ( 10). T o  con- 
vert the travel times to elastic moduli, we 
used thermoelastic identities: 

C,, = ~ ; l ( ~ / ~ ~ ) ( L / L ~ ) ' ( t c / t ) ~  

where the subscript or the  superscript zero 
denotes the  value at  ambient pressure. T h e  
quantity C, is the corresponding elastic 
modulus (ij = 22 or 5 5  In the present 
study), p is the  density, L 1s the sample 
length, and t is the  travel ttme. T h e  preci- 
s w n  Ln the  travel tlme measurements is 
better than 0.2%, and the effect of the gold 
foil bond introduces uncertalntles In the 
travel time o n  the order of 0.1%. Published 
data ( 4 )  were used to  calculate the density 

Zaug et a/. 
(5 )  

A 

Pressure (GPa) 

Fig. 1. Longitudna eas tc  modulus C,, versus 
pressure for slngle crystals of San Carlos olvine. 
Filled crcles, data from this study; solld Ihne, data 
from (4); and triangles, data from (5). The uncer- 
ta~ntles ~n pressures are lnd~cated by the horl- 
zontal error bars shown for the h~ghest pressure 
data polnts in all three f~gures. The uncertaint~es 
n the elastic moduli ~n t h ~ s  study are about the 
slze of the symbol. 
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and length challges as f ~ ~ n c t i o n s  of pressure; 
the d~ffere~lces  between the  calculated C,, 
based o n  the  use of different data sets to  
convert our travel times to  the  elastic 111ocl- 
~ l l i  are less t h a ~ l  0.1 %. Thus, the  uncertain- 
ties for the  moduli are less than 0.5%. 

Our  ~~ l t r a son ic  data o n  C,, for Sari Car- 
los olivine agree at high pressures with the  
extrapolation of Webb's lo \~--~ressure  ultra- 
sonic data (4 )  and the ISS data of Zaug e t  al. 
(5 )  (Fig. 1) .  Our  results on Cj, for forsterite 
to 10 GPa  agree with earlier ultrasonic re- 
sults (8) and Brillouin spectroscopy data (6 ,  
7 )  (Fig. 2 ) .  

Wie deterluilled C j j  as a function of 
increasi~le vressure for San  Carlos olivine - L 

with one  sample o r ~ e n t e d  parallel to the  
[I001 axis and another salnple o r i e~ l t ed  
parallel to the  [001] axls to  clarify the  
behavior of this mode. T h e  first exveri- 
ment  was lna~ le  for the  [001] or ie l l ta t io~l  
(polarization of S-wave [100]) to -9.6 
GPa  (first ZnTe phase transition), and the  
secolld experiment was ~ l l ade  for the  [I001 

Duffy eta/,  (6) 
and Zha el a/. (7) 

0 

This study 
0 

\ 

Yoneda and Morioka 

80 
0 2 6 8 1'0 12 14 16 18 

Pressure (GPa) 

Fig. 2. Shear elastic modulus C,, versus pressure 
for snge  crystals of synthetic forsterite (Mg,SiO,). 
Filed circles, data from this study: diamonds. data 
from (6. 7); and solid line, data from (8). Uncertain- 
tes are as in F I ~ .  1 

or~el l ta t io l l  (polarization [@@I])  to  about 
13 GPa  ( the  pressure of 12.0  G P a  is 
marked bv the  second ZnTe vhase transi- 
t i on ) .  T h e  two experiments yielded con- 
sistent results o n  C;, for S a n  Carlos oli- 

, A  

vine as a f~ lnc t ion  of pressure and demon- 
strate that neither measurement was con- 
taminated by ~llisorientation of the  
t r a n s d ~ ~ c e r  or the  sample. A t  low pressure 
( to  -8 GPa) ,  our results agree with ( 4 )  
and ( 5 )  (Fig. 3).  Above 9 G P a  our results 
deviate f ro~l l  t he  downward curvature of 
Ci versus pressure in  the  measurements of 
(5). A t  13.5 GPa  (depth of -410 km),  our 
value of Cj j  is about 6% higher than  that  
of Zaug e t  nl. (5). 

Table 1 summarizes our results 011 C j j  
for San  Carlos olivine and forsterite, alone 
\ v ~ t h  the results of earlier studies. Neither 
the Brillou~n spectroscopy (6 ,  7) llor our 
~lltrasonic data exhibit the llonlillear de- 
pendence of Cji  on pressure observed by 
Zaug e t  01. (5); th i~s ,  shear velocities 111 

100, This study, 

I 
95 1 

1 > 
'I' " Zaug eta/.  

I 
901 

J A  A (5) 

9 A 

Q@ 

E4 [loo] Orlentaton 
9 [OOl] Orlentatlon 

7 0 6  1 ,  

0 2 4 6 8 10 12 14 16 

Pressure (GPa) 

Fig. 3. Shear elastc modulus C,5 versus pressure 
for San Carlos olivine. Filed circles and filled 
squares, data from this study; solid line, data from 
(4); and triangles, data from (5). Uncertainties are 
as n Fig. 1 Error bars of (5) are about the size of 
the symbols. 

Table 1. Summary of C,, data for olivine and forsterite as a function of pressure 

Source C,, ambient 
(GPa) 

aC,,/dP Comment 

Natural San Carlos olivine [(fiAg, ,Fe, ,),SiOJ 
This study 77.2 1.56 To >12 GPa 
Webb (4) 76.9 1.62 Refit her data with straight line 

(measurements to 3 GPa) 
Zaug e l  a/. (5) 77.0 2.18 82C55/8P2 = -0.1 6/GPa ( I  I) 
Kumazawa and Anderson ( I )  76.9 1 .80 To 0.2 GPa 

Synthetic pure forster~te (iMg,SiO J 
This study 81.9 1.41 To -1 0 GPa 
Duffy e l  a/. (6) and Zha et a/. (7) 1.38 To 16 GPa 

Yoneda and Mor~oka (8) 81.2 1.40 Refit their data with straight line 
(measurements to 6 GPa) 

Bassett e l  a/. (12) 83.8 1.50 To A GPa 
Graham and Barsch (2) 81.4 1.65 To 1 GPa 
Kumazawa and Anderson ( I )  78.1 1.64 To 0.2 GPa 

ollville are not expected to exhibit an  
a ~ ~ o m a l o u s  curvature at pressures of the 
~ n a n t l e  transitioll zone. 
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