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Selected Elastic Moduli of Single-Crystal
Olivines from Ultrasonic Experiments
to Mantle Pressures

Ganglin Chen,* Baosheng Li, Robert C. Liebermann

Ultrasonic interferometric measurements, developed for polycrystalline samples in a
multi-anvil apparatus, were extended to single-crystal samples of San Carlos olivine
and forsterite. The elastic moduli, C,, and C44 of San Carlos olivine and C¢ of pure
forsterite, were measured to about 13 gigapascals. These data on C,, for San Carlos
olivine and C,; for forsterite are consistent with earlier measurements and extrapo-
lations. The C,, for San Carlos olivine increases linearly as a function of increasing
pressure, unlike the earlier nonlinear behavior observed at high pressure with impulsive

stimulated scattering techniques.

Understanding the dynamics of Earth’s man-
tle depends critically on the models of its
mineralogical and chemical composition as a
function of depth. Direct information on the
composition comes from comparison of seis-
mic profiles of the mantle with the sound
velocities of candidate minerals measured in
the laboratory. Olivine [(Mg,Fe),SiO,] is one
of the major constituents of the upper mantle;
this mineral transforms to a B phase (wads-
leyite) and a spinal polymorph (ringwoodite)
at the pressures and temperatures of the man-
tle transition zone (410 to 660 km). The
significance of the sound velocities of olivine
and its high-pressure polymorphs in the inter-
pretation of the mantle composition has mo-
tivated measurements on this mineral to suc-
cessively higher pressures. The earliest ultra-
sonic measurements were limited to pressures
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below 1 GPa (I, 2). These low-pressure data
for olivine have been used to construct man-
tle mineralogical models (3). Webb (4) mea-
sured the sound velocities of single crystals of
San Carlos olivine [(Mg,4Fe,,),SiO,] in a
liquid-medium pressure vessel to 3 GPa using
ultrasonic  interferometry; she observed a
slightly nonlinear dependence of certain elas-
tic moduli (Cy) with pressure. Using impul-
sive stimulated scattering (ISS), Zaug et al. (5)
measured the elastic moduli of San Carlos
olivine to 12.5 GPa in a diamond-anvil cell
and observed a pronounced curvature in the
variation of Css as a function of increasing
pressure. Their data suggest that the P- and
S-wave velocities of olivine at a depth of 410
km are lower than those calculated from the
third-order finite strain extrapolation of low-
pressure elasticity data (3).

Recently, Duffy et al. (6) and Zha et al. (7)
measured the sound velocities of single-crystal
forsterite (Mg,SiO,) using Brillouin spectros-
copy in a diamond-anvil cell; their results
exhibit good agreement with those of Yoneda
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and Morioka (8) measured to 6 GPa. Neither
of these studies indicated a nonlinear behav-
ior of Cs5 versus pressure. However, the issue
of whether this curvature exists for iron-bear-
ing olivine is unresolved because Yoneda and
Morioka and Duffy et al. used pure forsterite
crystals; no pure mode directions were mea-
sured in the latter study (6).

We report here the results of ultrasonic
interferometric measurements on single
crystals of both San Carlos olivine and pure
forsterite in a multi-anvil apparatus (9).
The goals of these experiments were (i) to
test the feasibility of using this technique
with single-crystal samples and (ii) to un-
derstand the behavior of the Cys5 mode of
olivine under high pressure. We also report
measurements for the longitudinal mode
C,,, for which there is good agreement
between the data of Webb (4) and those of
Zaug et al. (5).

We measured the acoustic travel times
through the olivine and forsterite samples
by ultrasonic interferometry (10). To con-
vert the travel times to elastic moduli, we
used thermoelastic identities:

Cy = Cplpo)(LLo) (toft)*

where the subscript or the superscript zero
denotes the value at ambient pressure. The
quantity C; is the corresponding elastic
modulus (i = 22 or 55 in the present
study), p is the density, L is the sample
length, and ¢ is the travel time. The preci-
sion in the travel time measurements is
better than 0.2%, and the effect of the gold
foil bond introduces uncertainties in the
travel time on the order of 0.1%. Published
data (4) were used to calculate the density
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Fig. 1. Longitudinal elastic modulus C,, versus
pressure for single crystals of San Carlos olivine.
Filled circles, data from this study; solid line, data
from (4); and triangles, data from (5). The uncer-
tainties in pressures are indicated by the hori-
zontal error bars shown for the highest pressure
data points in all three figures. The uncertainties
in the elastic moduli in this study are about the
size of the symbol.
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and length changes as functions of pressure;
the differences between the calculated C;
based on the use of different data sets to
convert our travel times to the elastic mod-
uli are less than 0.1%. Thus, the uncertain-
ties for the moduli are less than 0.5%.

Our ultrasonic data on C,, for San Car-
los olivine agree at high pressures with the
extrapolation of Webb’s low-pressure ultra-
sonic data (4) and the ISS data of Zaug et al.
(5) (Fig. 1). Our results on Cs; for forsterite
to 10 GPa agree with earlier ultrasonic re-
sults (8) and Brillouin spectroscopy data (6,
7) (Fig. 2).

We determined Cs5 as a function of
increasing pressure for San Carlos olivine
with one sample oriented parallel to the
[100] axis and another sample oriented
parallel to the [001] axis to clarify the
behavior of this mode. The first experi-
ment was made for the [001] orientation
(polarization of S-wave [100]) to ~9.6
GPa (first ZnTe phase transition), and the
second experiment was made for the [100]
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Fig. 2. Shear elastic modulus C versus pressure

for single crystals of synthetic forsterite (Mg,SiO,).

Filled circles, data from this study; diamonds, data

from (6, 7); and solid line, data from (8). Uncertain-

ties are as in Fig. 1.
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0

orientation (polarization [001]) to about
13 GPa (the pressure of 12.0 GPa is
marked by the second ZnTe phase transi-
tion). The two experiments yielded con-
sistent results on Cyg for San Carlos oli-
vine as a function of pressure and demon-
strate that neither measurement was con-
taminated by misorientation of the
transducer or the sample. At low pressure
(to ~8 GPa), our results agree with (4)
and (5) (Fig. 3). Above 9 GPa our results
deviate from the downward curvature of
Css versus pressure in the measurements of
(5). At 13.5 GPa (depth of ~410 km), our
value of Css is about 6% higher than that
of Zaug et al. (5).

Table 1 summarizes our results on Css
for San Carlos olivine and forsterite, along
with the results of earlier studies. Neither
the Brillouin spectroscopy (6, 7) nor our
ultrasonic data exhibit the nonlinear de-
pendence of Cys on pressure observed by
Zaug et al. (5); thus, shear velocities in
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Fig. 3. Shear elastic modulus Cgg versus pressure
for San Carlos olivine. Filled circles and filled
squares, data from this study; solid line, data from
(4); and triangles, data from (5). Uncertainties are
as in Fig. 1. Error bars of (5) are about the size of
the symbols.

Table 1. Summary of Cg data for olivine and forsterite as a function of pressure.

Cys ambient
Source 5 (GPa) dCss/0P Comment
Natural San Carlos olivine [(Mg, oFe,, ;).SiO,]

This study 77.2 1.56 To >12 GPa

Webb (4) 76.9 1.62 Refit her data with straight line
(measurements to 3 GPa)

Zaug et al. (5) 77.0 2.18 92Cgg/0P? = ~0.16/GPa (17)

Kumazawa and Anderson (7) 76.9 1.80 To 0.2 GPa

Synthetic pure forsterite (Mg,SiO,)

This study 81.9 1.41 To ~10 GPa

Duffy et al. (6) and Zha et al. (7) 1.38 To 16 GPa

Yoneda and Morioka (8) 81.2 1.40 Refit their data with straight line
(measurements to 6 GPa)

Bassett et al. (12) 83.8 1.50 To 4 GPa

Graham and Barsch (2) 81.4 1.65 To 1 GPa

Kumazawa and Anderson (7) 781 1.64 To 0.2 GPa
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olivine are not expected to exhibit an
anomalous curvature at pressures of the
mantle transition zone.
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