most sensitive technique for detecting in-
fectious DEN viruses (16). After 7 days,
mosquito heads were examined by immuno-
fluorescence for the presence of DEN-2 vi-
rus. Expression of D2prMa virus efficiently
inhibited the biological transmission of
DEN-2 virus because, of the 26 saliva sam-
ples tested, only one was weakly positive for
DEN-2 infection (Table 1). In contrast, 20
of 26 saliva samples obtained from mosqui-
toes co-infected with TE/3'2] and DEN-2
viruses were positive for DEN-2 virus when
inoculated into mosquiitoes (Table 1). Sali-
va samples were scored positive for the pres-
ence of virus if at least one of the five
saliva-injected mosquitoes was positive for
DEN-2 antigen by immunofluorescence.

Both DEN-2-derived sense and anti-
sense prM RNA have been shown to inter-
fere with DEN-2 virus replication in mos-
quito cells. This interference is specific be-
cause there is no inhibition of replication of
DEN-3 and DEN-4 viruses (13). Future
work will focus on using dsSIN viruses to
transduce mosquito cells with antisense
RNAs that will target the genomes of all
four DEN virus serotypes. The dsSIN trans-
ducing viruses are well suited for delivering
anti-virus molecules to mosquito tissues
where arbovirus replication occurs. These
results show that antisense RNA can be
used to ablate flavivirus transmission from
Aedes aegypti. Ultimately, mosquito ge-
nomes will need to be manipulated with
DNA-based transformation techniques to
ensure both heritability and transcriptional
control of the desired anti-virus agent in
the mosquito (21).
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The development of the thymus depends initially on epithelial-mesenchymal and sub-
sequently on reciprocal lympho-stromal interactions. The genetic steps governing de-
velopment and differentiation of the thymic microenvironment are unknown. With the use
of atargeted disruption of the whn gene, which recapitulates the phenotype of the athymic
nude mouse, the WHN transcription factor was shown to be the product of the nude locus.
Formation of the thymic epithelial primordium before the entry of lymphocyte progenitors
did not require the activity of WHN. However, subsequent differentiation of primitive
precursor cells into subcapsular, cortical, and medullary epithelial cells of the postnatal
thymus did depend on activity of the whn gene. These results define the first genetically
separable steps during thymic epithelial differentiation.
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and restriction to self major histocompati-
bility complex (1). The importance of the
thymic microenvironment in shaping the T
cell repertoire has long been recognized (2).
Development of a functionally competent
thymus depends on a series of epithelial-
mesenchymal and subsequent lympho-stro-
mal interactions (3), which implies the ex-
istence of developmentally restricted con-
trol points in the differentiation of thymic
epithelium (4). Here, we have taken a ge-
netic approach to identify the WHN tran-
scription factor as an early regulator of thy-
mic epithelial differentiation.

The whn gene (5) is mutated on mouse
and rat nude alleles (5, 6), which suggests
that the WHN transcription factor is en-
coded by the nude locus. We used a targeted



disruption of the whn gene, produced by
homologous recombination in mouse em-
bryonic stem cells, to verify this. In the
original nude mouse allele, the third exon
of the whn gene carries a single base pair
deletion (5). For targeted inactivation of
the whn gene, a Sfi [ site in the third exon
of the mouse whn gene close to the site of
the spontaneous mutation (Fig. 1A) was
used to insert a B-galactosidase (lacZ)-neo
cassette (7).

Two independent, correctly targeted
embryonic stem cell clones were used to
establish mouse strains carrying the whn
mutation, and mice heterozygous for the
mutation (whn*/~) were intercrossed to
generate homozygous mutants (whn™/~)
(Fig. 1B). Both lines gave identical results:
whn™/~ animals exhibited all gross macro-
scopic features of the original nude mouse,
such as hairlessness and athymia (Fig. 2).
Flow cytometric analysis of lymphocytes
isolated from spleen and mesenteric lymph
nodes of 7-week-old mice revealed the com-
plete absence of mature o/ T cells in —/—
animals [as detected by antibodies to T cell
receptor (TCR) B chain, CD4, and CD8g],
whereas +/— animals were indistinguish-
able from +/+ wild-type animals (Fig. 1C).
The absolute frequency of B cells in —/—
animals was unchanged in mesenteric
lymph nodes and increased twofold in
spleen as compared to +/+ and +/— mice.
Similar findings have been described for
nude mice (8).

When nu/nu mice were crossed with an-
imals carrying the targeted insertion in the
whn gene, no complementation of the char-
acteristic pathologic features was observed
in compound whn™/nu heterozygotes, indi-
cating that the two mutations are allelic.
This result provides direct proof that the
whn gene represents the nude gene (Fig. 2).

In the construct used for disruption of
the whn exon 3, the B-galactosidase coding
region is preceded by an internal ribosomal
entry sequence (9); therefore, targeted in-
sertion generates a bi-cistronic transcrip-
tion unit (where two proteins are made
from one mRNA) in which the expression
of the gene encoding Escherichia coli B-ga-
lactosidase is under the control of whn tran-
scriptional regulatory elements. The detec-
tion of the cytoplasmic reporter protein
provides a distinct advantage over direct
WHN protein detection, as WHN is a nu-
clear protein and thus not present in cyto-
plasmic extensions of the characteristic ep-
ithelial network in the thymus; further-
more, it provides a greatly improved resolu-
tion over RNA in situ hybridization
analyses and facilitates co-localization stud-
ies with other proteins (10). At birth, the
thymuses of whn*/* animals contain no
B-galactosidase—positive cells and appear
pale after in situ staining (Fig. 3A); in
contrast, the thymuses of whn*/~ animals
are intensely blue (Fig. 3B). In whn™/~
animals, no thymus can be detected; how-
ever, two cell aggregates located in the an-
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terior mediastinum above the heart stain
blue (Fig. 3C), indicating that the thymic
rudiment in whn™'~ animals contains B-ga-
lactosidase—positive cells.

To determine whether transcription of
the whn locus begins before the immigra-
tion of lymphocyte precursors, we studied
phenotypically normal heterozygous ani-
mals at embryonic day 12.5 (E12.5). B-Ga-
lactosidase activity was readily detected in
two circumscribed regions of the pharyngeal
region. At this stage, the thymic primordi-
um (I1) consists of two small clusters of
epithelial cells positive for B-galactosidase,
surrounded by a layer of flat mesenchymal
cells with no evidence of lymphocytes (Fig.
3D). This finding suggests that whn expres-
sion occurs in the thymic primordium be-
fore the immigration of T cell precursors.

To determine whether sustained expres-
sion of whn requires the presence of func-
tional WHN protein, the thymic rudiments
of whn™/~ mice were investigated. Even at
birth, the alymphoid thymic rudiments of
whn ™/~ mice [which at this stage consists of
an encapsulated cystic aggregation of epi-
thelial cells (11)] are positive for B-galac-
tosidase (Fig. 3E), indicating that WHN

nu/+

nu/-

Fig. 2. The disrupted whn gene and nu are allelic.
Mice carrying the original nu allele and mice car-
rying the targeted whn gene were crossed to yield
all six possible genotypes, the four relevant of
which are shown. The heads of animals (left) indi-
cate the lack of hair growth in whn='~ and nu/
whn~ animals; on the right, the thoracic situs are
shown, indicating the absence of a normal thymus
(open arrowhead) in whn='~ and nu/whn~ ani-
mals. Heterozygous animals (+/— and +/nu) are
phenotypically normal; their thymuses are indicat-
ed by arrows.
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does not regulate the activity of the whn
promoter. It appears that a limited degree of
proliferation of epithelial precursor cells

Fig. 3. Expression of the whn locus in thymus.
Histochemical detection of B-galactosidase activ-
ity (27) was used as a measure for whn activity
(see Fig. 1). (A through C) Hearts and thymuses
from newborn mice were dissected and stained in
situ. Note the absence of B-galactosidase activity
in +/+ thymus (A), strong staining in +/— thymus
(B), and intense staining of the thymic rudiment in
—/— mice (C). (D) Alymphoid thymic anlage in a
E12.5 +/— embryo (the day of finding the vaginal
plug was taken as E1); all epithelial cells stain blue.
(E) Alymphoid thymic rudiment in a newborn
whn~/~ animal. Note the cystic (arrow) appear-
ance of the thymic rudiment consisting of blue
epithelial cells. The scale bar in (A) applies also to
(B) and (C) and represents 0.5 mm; the scale barin
(D) also applies to (E) and indicates 50 um.

Fig. 4. Expression of B-galactosi- A
dase in subcapsular, cortical, and
medullary thymic epithelial cells of
whn*/* and whn*/~ mice. Frozen
sections of thymuses of newborn
+/— and +/+ mice (A) or 3-week-
old +/— mice (B) were double-
stained for expression of B-galacto-
sidase, cytokeratin (A), and ER-TR4
and ER-TRS5 (B), respectively (15). In
(A), B-galactosidase and cytokeratin
expression pattemns are superim-
posable. Note the relative abun-
dance of B-galactosidase—positive
cells in the subcapsular region of the
newborn thymus. Subcapsular and
outer cortical areas are shown; the
capsule is indicated by an arrow in
phase-contrast sections. No B-ga-
lactosidase staining above the back-
ground level was observed in +/+
thymuses. In (B), the distribution of
ER-TR4, a marker of cortical epithe-
lial cells, was similar to that of B-ga-
lactosidase (examples are highlight-

Phase contrast

B -Galactosidase

can occur without lympho-epithelial inter-
action, as the number of cells in the thymic
rudiments of whn ™/~ animals is greater than
the number of cells found in the alymphoid
thymic primordium.

The expression of WHN in various sub-
sets of thymic epithelia was studied in
whn*/~ animals. At birth, B-galactosidase
activity is readily detectable in epithelial
cells in the subcapsular region of the thy-
mus, and positive cells are present through-
out the cortical and medullary regions (Fig.
4). In thymuses from mice 7 weeks and 9
months of age, the epithelial cells from all
regions of the thymus are still positive for
B-galactosidase activity, although the pro-
nounced expression in the subcapsular re-
gion is lost.

To substantiate the conclusion of gener-
alized whn expression in thymic epithelial
cells, we performed co-localization studies
with keratin antibodies (anti-keratin). Ker-
atin is a marker of thymic epithelial cells of
all stages of differentiation (12). Using a
cytokeratin antibody, we detected the typ-
ical immunofluorescence pattern of the thy-
mic network in thymuses both at birth (Fig.
4) and in adults. Anti—-galactosidase and
anti-keratin staining patterns are virtually
superimposable (Fig. 4A). Co-localization
of B-galactosidase and ER-TR4 [a marker
for cortical epithelial cells (13)] and ER-
TR5 [a marker for medullary epithelial cells
(13)] confirms expression of the whn gene
in epithelial cells of both thymic compart-
ments (Fig. 4B).

Several important conclusions can be
drawn from these experiments. First, the

B-Galactosidase Cytokeratin

ER-TR4 B-Galactosidase ER-TR5

ed by curved arrows), whereas ER-TR5, a marker of medullary epithelial cells, stained only a subset
(arrowheads) of epithelial cells positive for B-galactosidase. The overall staining pattern of B-galactosi-
dase—positive cells was more diffuse than that of cytokeratin or ER-TR antigens, which is consistent with
the generalized cytoplasmic localization of B-galactosidase. Scale bars correspond to 50 pm.
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WHN transcription factor (5) is the prod-
uct of the nude locus. To confirm the cir-
cumstantial evidence (5, 6), we provide
here direct proof for the identity of the nude
gene by the observation of the phenotype of
athymic nude mice in whn™/nu compound
heterozygotes. Second, the initial formation
of the thymic anlage does not require the
activity of the whn gene because the alym-
phoid athymic rudiment becomes estab-
lished in whn*/* and whn™/~ mice. This
suggests that whn acts downstream of a gene
(or genes) specifying the development of
the thymic primordium. Third, subsequent
differentiation of thymic epithelial cells in
the developing thymus strictly depends on a
at least one wild-type copy of the whn gene.
Because the expression of the whn gene
begins before immigration of lymphoid pre-
cursors, the activity of whn is likely to be
required for productive colonization of the
thymic rudiment. Epithelial precursors of
whn™'~ mice may be frozen in an immature
stage of differentiation; this result agrees
with the finding of an abnormal surface phe-
notype of thymic epithelia in nude mice
(14). However, because all major epithelial
subsets in the thymus studied here continue
to express whn throughout adult life, the
activity of the WHN transcription factor
may be required not only for the initiation
but also for the maintenance of the differen-
tiated phenotype of thymic epithelial cells.
Our results establish a genetically de-
fined control point in thymic epithelial dif-
ferentiation. The WHN transcription factor
is required for progression beyond the alym-
phoid stage of the thymic rudiment. The
identification of genes acting up- and
downstream of whn will be required before

the two steps now defined can be subdivid-
ed further.
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Chemical Usurpation of a Nest by
Paper Wasp Parasites

Anne-Genevieve Bagneres,” Maria Cristina Lorenzi,
Georges Dusticier, Stefano Turillazzi, Jean-Luc Clément

The paper wasp Polistes atrimandibularis is an obligatory social parasite of another
Polistes species, P. biglumis bimaculatus. To control the host nest, the parasite sequen-
tially changes the composition of its chemical signature, the cuticular hydrocarbons,
during the colonial cycle. Gas chromatography-mass spectrometry of the cuticular hy-
drocarbons at every stage of the cycle showed that the parasite can switch on and off
an entire chemical family, namely, the unsaturated hydrocarbons. In this way the parasite
can match the host signature at a critical moment of the colonial cycle.

Having no worker caste and being incapa-
ble of nest building, P. atrimandibularis is an
obligatory social parasite. During the short
4-month summer colonial cycle of the host,
a P. atrimandibularis queen usurps a nest of a
P. biglumis bimaculatus foundress (I, 2).
Nest invasion occurs within the span of a
few hours, during which the initially unag-
gressive parasite becomes increasingly dom-
inant and begins egg laying. In contrast the
host queen, at first very aggressive, becomes
subdued (3). To date there has been no
satisfactory explanation for the ease with
which P. atrimandibularis controls the host
colony.

In insects, environmental perception of-
ten relies heavily on olfaction, gustation, or
both. In social wasps, nestmate—non-nest-
mate discrimination depends on odors (4).
These findings led us to suspect that chem-
ical mimicry could be involved in nest usur-
pation by P. atrimandibularis. Like other
social insects, the host P. biglumis bimacula-
tus has a chemical signature that facilitates
recognition between colony members (5).
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This species- and colony-specific signature
depends mainly on cuticular hydrocarbon
components (6), which are dependent on
environmental and physiological factors
(7). Plasticity or camouflage of cuticular
hydrocarbon patterns has already been re-
ported in insects living in natural and arti-
ficial heterospecific colonies (8).

The purpose of this study was to better
understand the integration mechanism by
comparing the chemical signature of the
parasite, the host, and their descendants
collected in the field at different times of
the colonial cycle. We extracted almost 80
different cuticular products from the two
species, all of which were hydrocarbons rang-
ing in chain length from C,; to C;,. Data for
mathematical and statistical analysis were
obtained by gas chromatography (GC) on
individual extracts, and the identification of
hydrocarbons was achieved by GC-mass
spectrometry (GC-MS) on pooled extracts
(9). Considerable variations in cuticular hy-
drocarbons of individuals were noted during
the short colonial cycle (10).

Polistes atrimandibularis queens, fertilized
in the previous summer, begin searching for
a host comb about 1 month after solitary
nest founding in early June by the host
queen. At this time, just before invasion
(late June), the cuticular signatures of the
two species are distinct (Fig. 1A). The sig-
nature of P. atrimandibularis females is ex-
tremely rich in unsaturated hydrocarbons,
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