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Peridotite xenoliths from the Cascade arc in the United States and in the Japan arc have
neodymium and osmium isotopic compositions that are consistent with addition of 5 to
15 percent of subducted material to the present-day depleted mantle. These observations
suggest that osmium can be partitioned into oxidized and chlorine-rich slab-derived fluids
or melts. These results place new constraints on the behavior of osmium (and possibly
other platinum group elements) during subduction of oceanic crust by showing that

osmium can be transported into the mantle wedge.

Studies of the isotopic compositions and
large-ion lithophile and light element
abundances of arc lavas (1-3) have shown
the importance of recycled subducted ma-
terial in the genesis of arc magmas. Possible
slab-derived melts have also been identified
in arc peridotite xenoliths (4). Osmium
isotopic studies provide a useful way to view
the process of crustal recycling, because Re/
Os ratios in the oceanic lithosphere are up
to several orders of magnitude higher than
in mantle peridotite, and Re and Os both
display chalcophile and siderophile behav-
ior (5-12). Decay of '87Re [\ = 1.64 X
1071 years™! (13)] to '87Os in oceanic
crust in just tens of millions of years will
produce an '70s/'%80s ratio up to an order
of magnitude higher than that in the
present-day mantle. This radiogenic Os po-
tentially could elevate '87Os/'%8Os ratios in
the mantle above subduction zones. Many
ocean island basalts have 87Qs/18Qs ratios
that are higher than chondritic '870s/'8%0s
ratios, and these have been explained by
recycling of ocean crust into the deep man-
tle source regions of ocean island volcanism
(12). To further understand the role of sub-
ducted slabs in volcanic arc magma genesis
and the geochemical cycle of Re and Os at
convergent margins, we analyzed Os and Nd
isotopic compositions in spinel peridotite
xenoliths from lavas erupted in the Plio-
Pleistocene from Ichinomegata, Japan (14),
and Simcoe, Washington [Cascades (15,
16)], both of which sample the wedge
mantle because they are located about 50
km to the back-arc side of present-day

The peridotite xenoliths chosen for
study are fresh, with no signs of visible
alteration. The Simcoe samples are Cr-di-
opside—bearing spinel harzburgites with
high Mg numbers [molar Mg/(Mg + Fe?*)
of 0.910 to 0.914] and major element com-
positions indicative of extraction of a melt
(16). They contain rare phlogopite (15, 16)
and subchondritic Sm/Nd ratios indicative
of elevated light rare earth element abun-
dances relative to melt-depleted mantle.
These features are interpreted as arising
from later metasomatic processes. The Ichi-
nomegata samples are Cr-diopside—bearing
spinel lherzolites with Mg numbers from
0.89 to 0.91, which are typical of depleted-
to-fertile mantle (14). These samples have
Sm/Nd ratios ranging from chondritic to
higher than chondritic (light rare earth el-
ement depletion, Table 1) that are similar
to ratios in abyssal peridotites (17), which
are interpreted to result in part from melt
removal. The presence of pargasite in some
of these samples, as well as Sr-Nd isotopic
compositions extending from the depleted
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mantle field to higher 87Sr/¢Sr and lower
INA/Nd ratios (18), reflect metaso-
matic events after melt depletion. The
xenoliths from both locales have high oxy-
gen fugacities [about 0.5 to 1.5 log units
greater than that of the fayalite-magnetite-
quartz buffer (19, 20)] relative to those of
modern mantle samples not directly associ-
ated with volcanic arcs. This feature is con-
sistent with the peridotites having interact-
ed with water-bearing fluids or magmas de-
rived from subducting slabs (20, 21).
Several of the xenoliths have '87Os/
18805 ratios of 0.1277 to 0.1338. These
values are higher than ratios for present-day
depleted mantle [0.1220 to 0.1270 (9)] or
chondritic mantle ['870s/'%80s = 0.1275
(Table 1 and Fig. 1)]. Subcontinental man-
tle peridotites, massif peridotites, and abys-
sal peridotites typically have near-chon-
dritic to strongly subchondritic '87Os/!880s
ratios, reflecting Os retention and Re re-
moval during partial melting (5-7, 9, 10).
Most Simcoe and Ichinomegata xenoliths
have subchondritic '¥7Re/'®Os ratios and
were erupted less than 1 million years ago
(Ma), so the '870s/!880s values above chon-
dritic values cannot be accounted for by in
situ '8"Re decay. These high '87Os/!%80s
ratios may instead represent addition of ra-
diogenic Os to these samples after some melt
was extracted from these parts of the mantle.
The Sm-Nd isotopic data for the Ichi-
nomegata samples plot as an array from
I3Nd/4Nd of 0.51335 to 0.51280, and
from '47Sm/'**Nd of 0.38 to ~0.2 (Fig. 2).
Such an array can be interpreted as either
an isochron or a mixing line between two
components. If this array was the result of
variable degrees of depletion from a fertile
mantle, then an isochron of 400 Ma ap-

Table 1. Bulk rock Al,O (weight %), Sm-Nd isotopic systematics of clinopyroxene separates, and Re-Os
isotopic systematics of bulk rock samples of the Simcoe (Sim) harzburgite and Ichinomegata (I) Iherzolite
xenoliths are shown (29). Alumina data for Simcoe are x-ray fluorescence (XRF) analyses (20). All data for
Ichinomegata are XRF analyses, except for I-102, which is an inductively coupled plasma analysis. Dashes
indicate not analyzed for.
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proximates the time of depletion of these
peridotites (Fig. 2). Combined Re-Os and
Sm-Nd isotopic systematics are not consis-
tent with this interpretation. The Ichino-
megata samples with 87Os/'880s ratios that
are higher than chondritic 87Os/!880s ratios
(samples 1-9 and I-101, Table 1) have sub-
chondritic Re/Os ratios and hence give neg-
ative model depletion ages, which is incon-
sistent with long-term decay of 3’Re after
melt depletion in a closed system. These
samples also have the lowest *3Nd/'*Nd
ratios (Table 1 and Fig. 3), and this coupling
instead is more likely to result from mixing of
depleted mantle with an isotopic component
with low "¥Nd/'*Nd and high '87Os/!880s

ratios.
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Fig. 1. Os isotopic evolution diagram [data sources
were (5-7) and (9-12)]. Oceanic island basalts
(OIB) are samples considered not to have been
contaminated by oceanic lithosphere material (72).
The abyssal peridotite range is as defined by Snow
and Reisberg (9). Both Simcoe and Ichinomegata
have 1870s/'88Q0s ratios that are higher than chon-
dritic 187Os/'880s ratios in some samples, unlike
reported subcontinental lithospheric mantle from
other locales not associated with present-day sub-
duction. Ga, billions of years ago.
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Fig. 2. Sm-Nd isotopic systematics of clinopy-
roxenes from Simcoe and Ichinomegata perido-
tites. Additional published data on Ichinomegata
samples are plotted as circles (78). A reference
line of 400 Ma is plotted for six of seven Ichino-
megata samples analyzed in this study.
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For the Simcoe samples, their subchon-
dritic #7Sm/'**Nd ratios (elevated light rare
earth element abundances), lack of correla-
tion between Sm and Nd isotopic data (Fig.
2), and similarity of "*Nd/'**Nd and 8Sr/
86Sr compositions with those of Pliocene Sim-
coe lavas (16, 22) are consistent with recent
addition of isotopically distinct Nd and Sr to
depleted mantle.

The combined Nd and Os isotopic data
for Simcoe and Ichinomegata samples indi-
cate mixing between isotopically distinct
Os components. Lower 37Os/!%80s ratios
are coupled with higher ¥*Nd/'**Nd ratios
that form a band extending from typical
depleted mantle values to those with higher
18705/1880s ratios and lower Nd/**Nd
ratios (Fig. 3). This negative correlation
between Nd and Os isotopic compositions
is not evident in data for cratonic mantle
xenoliths (6, 7), abyssal peridotites (5, 9,
10), or peridotite massifs (5, 23).

Correlation between 87Qs/'880s ratios
and Al,O; concentrations provides further

Fig. 3. Nd-Os isotopic relations for the Simcoe and
Ichinomegata samples. Mixing curves (24) are as
follows: 1: Juan de Fuca, 95,.:5..; 3:1 mix ratio
[denotes Juan de Fuca slab (under the Cascades)
with the subduction component calculated as 95%
basalt (bas) and 5% sediment (sed), with an Os
mantle peridotite-to-subduction component abun-
dance mixing ratio of 3:1. 2: Juan de Fuca, 90,
104y 2.5:1 mix ratio. 3: Pacific, 95,,,:5..4 4:1
mix ratio (“‘Pacific’’ denotes the Pacific slab under
Japan). 4: Pacific, 80,204 4:1 mix ratio.
Crosses on the mixing curves indicate the percent-
ages of the subduction component added to peri-
dotite in the mix, in 5% increments. The 870s/
1880s subduction components for mixtures 1, 2, 3,
and 4 are 0.2620, 0.3020, 0.8859, and 0.8400,
respectively, and are calculated as previously de-
scribed (24). Abyssal peridotite data are from Snow
and co-workers (9, 24).

Fig. 4. Os-Al,O; relations for the Simcoe and
Ichinomegata samples. A melt depletion trend is
recorded by the Ronda peridotite data (23). Sub-
continental lithospheric mantle data are from
harzburgite and lherzolite xenoliths from the
United States, China, Mexico, Australia, and
Kaapvaal (southern Africa) cratons (6, 30). Abys-
sal peridotite data are from Snow and co-work-
ers (9, 30). Mixing curves are for a depleted
mantle with '870s/1880s = 0.122 (to conform
with the Os mixing models in Fig. 3) and with
AlLO, for Simcoe and Ichinomegata mixing
curves equal to 1.4 weight % and 2.9%, respec-
tively, which are mixed with subduction compo-
nents (Os is as defined in Fig. 3), with Al,O, equal
to 0 and 15%. The former is considered to be a
hydrous fluid and the latter a melt. The Simcoe
data correspond to the 0% Al,O5 mixing curve,
whereas Ichinomegata lies between the 0 and
15% mixing curves. Crosses on the mixing

support for the idea that these samples rep-
resent mixing between depleted mantle and
radiogenic Os components (Fig. 4). Some
peridotite massifs with high Al,O; concen-
trations indicative of little melt extraction
have near-chondritic present-day 8Os/
18805 ratios, whereas more depleted perido-
tites have low 87Qs/'8Q0s ratios, reflecting
removal of Re and Al,O; during melting
(23). Samples from individual massifs com-
monly plot on lines that reflect ages and
degrees of melting (23). The samples from
Simcoe and Ichinomegata do not show such
characteristics, but instead plot as oblique
arrays, indicating mixing between depleted
mantle and a source with abundant radio-
genic Os.

Mixing models can be used to evaluate
the effects of metasomatism of mantle by
fluids or melts for Nd and Os derived from
subducting slabs (24). The Simcoe data
can be produced by mixing about 7 to 15%
by mass of a subduction component con-
taining 90 to 95% subducted basalt and 5
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to 10% sediment with depleted peridotite.
This calculation is based on an Os abun-
dance in the peridotite of 2.5 to 3 times
that in the subducted rocks (Fig. 3) (24).
Slightly more sediment (up to 20%) and a
higher proportion of the Os in peridotite
of 4:1 result in about 6% of subduction
component being added to depleted peri-
dotite to produce the most radiogenic
Ichinomegata Os compositions. Our infer-
ences about proportions of basalt and sed-
iment are similar to those obtained from
analysis of Sr, Nd, Pb, and B isotopes and
trace element data in arc lavas from other
arcs (2). Higher proportions of sediment
to basalt (that is, >20% sediment) result
in curves that lie to the left of the data
fields in Fig. 3. Likewise, lower propor-
tions of Os in peridotite beyond 2:1 to 4:1
do not fit the data. If the average Os
abundances for the Simcoe and Ichino-
megata peridotite suites are used to represent
intrinsic mantle abundances (720 and 894
ppt, respectively), then the Os abundance
for the subduction component ranges from
225 to 290 ppt, which is within the upper-
most part of the range reported for basalts
and ocean sediments (24). Peridotites com-
monly have 1 to 5 parts per billion (ppb) Os
(24). Therefore, the low concentrations of
Os in the xenoliths might result from meta-
somatism in oxidizing conditions where Os
is moderately incompatible (24) and where
mantle sulfides may not have been as stable
as in less oxidizing regimes (25).

The Simcoe data are best explained by
addition of a component with radiogenic
Os and low ALO; to the depleted mantle
(Fig. 4). Aluminum is sparingly soluble in
hydrous fluids, including the slab-derived
water-rich fluids calculated to be in equilib-
rium with bark-arc mantle (3). The AL O;-
Os relations for the Simcoe samples are thus
consistent with interaction between a slab-
derived hydrous fluid and depleted mantle.
Ichinomegata peridotites may have inter-
acted with a slab-derived melt (4) or fluids,
as the AL O; values for the radiogenic Os
component or components have a range of
0 to 15%.

The Os data suggest that Os is mobile
during dehydration or melting of the slab.
In mafic layered intrusions, platinum
group elements are thought to be redistrib-
uted by hydrous and Cl-rich melts and
fluids (26). The volatility of platinum
group elements, and in particular Os, in-
creases as a function of fi;,5 and f¢ in
magmatic fluids (27). A hydrous compo-
nent, presumably fluids derived from a
subducting slab and equilibrated with
mantle wedge peridotite, added to a nor-
mal mid-ocean ridge basalt—type mantle
source, may contain as much as 1.2 weight
% Cl (3), and possible slab melts are also
high in ClI (4). Consequently, slab-derived

fluids and melts may be particularly effec-
tive in transporting Os from slabs into the
overlying mantle wedge and arc crust.
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tism (DTM); the others were dissolved in 120-ml Teflon
vessels with successive treatments of concentrated HF,
HCI, and H,S0O, at the University of Alberta. Both meth-
ods result in reproducible abundances and isotopic
compositions on peridotite samples (28). The reported
1870s/1880s values are relative to the Johnson Mathey
Os standard of 1870s/'880s = 0.1744 and have preci-
sions of £0.3 to 0.8% (20).

Subcontinental lithospheric mantle Al,O, data are from
F. R. Boyd and S. A. Mertzman, in Magmatic Process-
es: Physiochemical Principles, B. O. Mysen, Ed. (Geo-
chemical Society, University Park, PA, 1987), pp. 13-24
(Kaapvaal craton xenoliths). For other locales, Al,O,4
data are from table 1.2.11.4 in the Basaltic Volcanism
Study Project, Basaltic Volcanism on the Terrestrial
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Planets (Pergamon, New York, 1981), p. 288, and Os
isotopes are from T. Meisel and R. J. Walker, Journal of
Conference Abstracts, 6th V. M. Goldschmidt Confer-
ence, Heidelberg, Germany, 1996 (Cambridge Publica-
tions, Cambridge, 1996), val. 1, p. 396. Abyssal perido-
tite Al,O, data are from J. E. Snow and H. J. B. Dick,
Geochim. Cosmochim. Acta 59, 4219 (1995).
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Amino Acid Racemization and the
Preservation of Ancient DNA

Hendrik N. Poinar, Matthias Hoss,* Jeffrey L. Bada,
Svante Paabo

The extent of racemization of aspartic acid, alanine, and leucine provides criteria for
assessing whether ancient tissue samples contain endogenous DNA. In samples in which
the D/L ratio of aspartic acid exceeds 0.08, ancient DNA sequences could not be retrieved.
Paleontological finds from which DNA sequences purportedly millions of years old have
been reported show extensive racemization, and the amino acids present are mainly
contaminates. An exception is the amino acids in some insects preserved in amber.

The invention of the polymerase chain
reaction (1) has made it possible to deter-
mine DNA sequences from remnants of
extinct species and past populations (2, 3).
In addition, recent reports have claimed
that DNA can be retrieved from paleonto-
logical finds that are millions of years old
(4). However, because only a minority of
ancient specimens contain amplifiable an-
cient DNA (5), false positives resulting
from minute amounts of contaminating
DNA pose a serious threat (6, 7). Although
several ways to authenticate ancient DNA
have been suggested (2, 6, 8), the field is in
need of techniques that can indicate
whether a particular ancient specimen may
contain endogenous nucleic acids.

All amino acids used in proteins, with
the exception of glycine (Gly), can exist in
the form of two optical isomers, the D- and
L-enantiomers, of which the L-enantiomer
is used exclusively in protein biosynthesis.
Once isolated from active metabolic pro-
cesses, the L-amino acids undergo racemiza-
tion to produce D-amino acids until even-
tually the L- and D-enantiomers of a partic-
ular amino acid are present in equal
amounts. The rate at which racemization
takes place differs for each amino acid and
is dependent on the presence of water, the
temperature, and the chelation of certain
metal ions to proteins (9). Racemization is
thus affected by some of the same factors
that affect depurination of DNA, the major
hydrolytic reaction responsible for the
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spontaneous degradation of nucleic acids
(10). The racemization of aspartic acid
(Asp), which has one of the fastest racemi-
zation rates, has an activation energy and
rate constants over a wide temperature
range (at neutral pH) that are similar to
those for DNA depurination (10, 11). To
test whether the extent of amino acid race-
mization is a useful indicator of the extent
of DNA degradation in ancient specimens,
we examined archaeological specimens
from which DNA sequences have been re-
trieved (12). In order to ensure as far as
possible that the samples used yield genu-
inely ancient DNA, we limited our analysis
to nine cases that fulfill a number of criteria
of authenticity (2, 6, 8) and we excluded
human remains because of the inherent dif-
ficulty of recognizing contamination from
contemporary humans (2, 6, 8). We also
analyzed 17 samples, including some human
samples, from which no ancient DNA se-
quences could be amplified.

No DNA sequences could be retrieved
from samples in which the D/L Asp ratio
was higher than 0.08 (Table 1), whereas all
samples with D/L ratios below 0.08 yielded
DNA sequences. Furthermore, there was a
rough relation between the extent of Asp
racemization and the length of the retriev-
able DNA sequences (Fig. 1). In samples in
which the extent of Asp racemization was
similar to that caused by the 6 N HCI
hydrolysis procedure (D/L = 0.05), sequenc-
es between 140 and 340 base pairs (bp)
could be amplified, whereas samples with
greater amounts of racemization tended to
yield only shorter DNA fragments.

No general correlation was observed be-
tween the age of the samples and the re-
trieval of DNA or the extent of racemiza-
tion. However, of the nine samples that
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yielded DNA, seven stemmed from cold
environments and four of them have been
shown to contain smaller amounts of DNA
damage than samples that do not yield am-
plifiable DNA sequences (13). On the basis
of the racemization half-lives of Asp report-
ed for bone in various climatic regimes (9),
the finding that an Asp D/L ratio of about
0.1 is the limit for the retrieval of useful
DNA sequences implies that the survival of
DNA is limited to a few thousand years in
warm regions such as Egypt and to roughly
10° years in cold regions. Such' temporal
limits for DNA retrieval are similar to those
predicted from laboratory experiments (10).
Aspects of amino acid preservation other
than racemization do not show any corre-
lation with DNA preservation (14).
Because the racemization of Asp is faster
than that of other amino acids (9, I11),
the extent of racemization of Asp, among
the amino acids analyzed here, should be
the greatest, followed by alanine (Ala) and
leucine (Leu), if all amino acids are of the
same age. In contrast, a D/L ratio for Asp
that is lower than that for Ala or Leu indi-
cates contamination by more recent amino
acids. For the samples from which ancient
DNA sequences could be retrieved (Table
1), the extent of racemization of Asp was
always greater than that for Ala and Leu,
however, no authentic DNA sequences
could be retrieved from samples in which
the racemization of amino acids did not
follow this pattern. Thus, amino acid race-
mization provides a way to identify the large
majority of ancient samples that are not
expected to yield any ancient DNA. The
usefulness of this technique is enhanced by
the fact that samples of only a few milli-
grams are sufficient for the analysis, and the
results can be obtained in only a few days.
Ancient DNA sequences that are pur-
portedly millions of years old have been
reported from dinosaur bones, Miocene
plant fossils, and amber inclusions (4). The
D/L Asp ratio in the Utah dinosaur bone
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Fig. 1. Extent of Asp racemization plotted (as the
logarithm of the D/L ratio of Asp) against the max-
imum length of DNA amplified (in base pairs).



