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Temperatures and pressures measured by the Galileo probe during parachute descent 
into Jupiter's atmosphere essentially followed the dry adiabat between 0.41 and 24 bars, 
consistent with the absence of a deep water cloud and with the low water content found 
by the mass spectrometer. From 5 to 15 bars, lapse rates were slightly stable relative to 
the adiabat calculated for the observed H,/He ratio? which suggests that upward heat 
transport in that range is not attributable to simple radial convection. In the upper at- 
mosphere, temperatures of >I 000 kelvin at the 0.01 -microbar level confirmed the hot 
exosphere that had been inferred from Voyager occultations. The thermal gradient in- 
creased sharply to 5 kelvin per kilometer at a reconstructed altitude of 350 kilometers? as 
was recently predicted. Densities at 1000 kilometers were 100 times those in the pre- 
encounter engineering model. 

T h e  Galileo prohe, using instr~llne~lts and 
techniques previouslT- describeci ( I ) ,  mea- 
sured state properties of Jupiter's atmo- 
sphere from nanobar pressure levels to a 
final pressure of -24 bars. T h e  depth 
reached in the  probe's parachute descent, 
calc~~latecl from measured temperatures and 
pressures ass~ulning hT-drostatic equilillrium, 
was -16L1 km or L1.2190 of the r a d i ~ ~ s  of 
Jupiter. \'elocities during descent ~lecreased 
fro111 -4L10 m sp '  at parachute deployment 
to 156 111 s-' in the  first 100 s, to -48 m sp '  
at tlhe 3-bar level, and to -30 m s p l  a t  loss 
of signal. 

Temperatures measureci in parachute cle- 
scent had a n  accuracy; of -1 K and a dis- 
persion o n  tlhe order of the digital resolu- 
tion (0.12 K) (2 )  (Fig. 1) .  Comparison ~ v i t h  
the  Orton model 13) indicates that :he , , 

atmosphere is close to a dry , a i  -i' la L -at over 
this pressure range. \Xlater condensation, 
expected above the 5-l2ar level if the  m y -  
gel1 lnole fraction is solar [0.0017 (4)]  and 
ahove tlhe 4-1.ar level for the low ~vater  
abundance detected br; the neutral mass 
spectrometer [-0.2 of the solar ab~llldance 
value (511, has major effects o n  the temper- 
ature variation (6). Temperatures following 
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the  dry aciialxt at these levels confirm the  
lo\\, Lvater a l ~ ~ n d a n c e  and are col~sistellt 
with the  absence of a detectable n-ater 
clo~lcl (7) .  Deviations from the aciiabat be- 
t~veen  1 anii 3 bars, nrhich were initially 
interpreted as a stable layer in the  tenuous 
cloud above 1.6 bars (7)  and a n  ~lnstable 
layer below the cloud, are believed to 
reflect departures from preflight pressure 
sensor calibrations resulting from unantici- 
pated variations in the internal tem- 
perature (8). 

T h e  data, as corrected for temperature 
effects (91, start to diverge from the adiabat 
at pressures of > I 6  bars. T h e  sensor con- 
tinued to  reail until the probe signal was 
lost at a film1 pressure of 24 i- 1 bars. T h e  
final sensor temperature, 388 K, was only 37 
K cooler than the atlllospheric temperature 
at the  end of descent. 

T h e  temperature lapse rates between 
the  5-bar and 16-bar levels, -1.8 i- 0.1 K 
k m p l  (Fig. 21, were slightly stable against 
0\~ert~1r11 relatlve to  adiabatic lapse rates of 
-1.95 K k m p '  for a n  atlllosphere of the  
meas~~reci composition (10) .  This  poten- 
tlally iillportant obser\~ation implies that  
heat flux within this layer is not  1~y simple 
convection. Guillot e t  al .  ( 1  1 ) f o ~ ~ n d  that ,  
for Jupiter,  radiative transport co~ l ld  pre- 
dominate over convection in the  absence 
of condensed r a t e r  in  the  laver with tem- 
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of the  t ~ v o  orthogonal lateral axis acceler- 
a t io~ l s  over 16-s inter\rals. A t  pressures 
below 2.2 bars ancl above 7 bars, t he  ac- 
celerations were remarkablv constant.  
with maxiina (ay,, , , ,  where ay is accelera- 
t ion nornlal to  the  probe axis of symmetry) 
of -0.9 m sp'. Such a record would be 
procluced 1.7. a slightl\; elliptical s\vinging 
motion of the  probe beneath the  para- 
chute  (12)  of peak amplitude a = 

sinp'(aN,,,,Jg,) = 2.2", where gj is Jupiter's 
gravitational acceleration. A siinple pen- 
d u l ~ ~ r n  \\lit11 a length equal to  that  of the  
parachute cords (13.9 111) a o ~ ~ l d  sn-ing in 
Jupiter's gravity field ~ v i t h  a period of -4.9 
s. A 5-s period was seen in  the  amplitude 
of the  probe radio signal (1 3) .  T h e  s~ ldden  
j~ulllps in  amplit~lcle a t  2.2 and 3.3 bars 
(Fig. 31, \\it11 sul.sequent slow ilecaT- back 
to the  2.2" swingillg amplitude a t  7 bars, 
C O L I ~ ~  have been a res~llt  of tlhe ext>osure of 
the  sensors to the  probe's cold internal 
envirolllnellt (sensors reached 240 K,  13 K 
below their designeel operating range),  or 
they co~llcl have been stimulated 1.y hori- 
zontal gusts. T h e  jumps occur close to the  
level \\,here the  measured horizo~ltal  \\rind 
changes froill a n  increasing profile to  con- 
stant magnitude (14) .  

Upper atmospheric data recorciing be- 
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Fig. 1. Telnpetatures measured n descent as 
a functon of pressure The th~ck  l~ne 1s formed 
by the data po~nts, the f~t ie t i e  1s the Orion 
model (3) 
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Fig. 2. Temperature lapse rates w~ th  alt~tude for 
altitudes below the 5-bar level. The adiabat is for 
the lneasured H,/He rato ( lo ) ,  for\vhch the adla- 
bat d~ffers by -0.025 K km from that it? the 
Orion model. 
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gall at a deceleration of 40 kg ~ v h e n  probe 
velocity \\?as 47.23 knl s P 1  relative to the 
atmosphere (15).  Decelerations with an  ini- 
tial resolution of 3 u e  and an  altitude reso- 

8 u 

lution of 1.75 kill were recordeel through 
seven clecades of amplitucle to a peak of 228g, 
afterwards dilninishing t o ~ ~ a r c l  lgJ. Fro111 
these data and the initial conditiolls of ve- 
locity, path angle, and 11eadmg angle at entry 
(1 6), the entry trajector\; \l7as reconstructeel 
to  clefille velocity, flight path angle, and 
altltucle from the extxriment threshold to 
the time of parachute cleplo\;ment. T h e  final 
state of this tralectorv was co~llcared nit11 
initial conditio~ls in descent, and s~llall ad- 
j~~stinents in initial conditions at entry were 
made to luatch conditions at the inode 
change. T h e  reconstructed tlhreshold alti- 
t~lcle nras 1019 km. 

T h e  upper atmospheric density profile 
p(z) \\lit11 respect to altltude z (Fig. 4) was 
calc~llated from the reconstr~~cted velocities 
V, measured decelerations a ,  and kno~vledee 
of the drag coefficient C,(t), vehicle illass 
nz(t), and frontal area A( t )  (with respect to 
time t ) :  p = 21na/(c,AV'). Drag coeffi- 
cients accurate within -1% were estah- 
lished by 12allistic range tests (1 7) and com- 
putatlonal fluid clynalllics solutions (18).  
T h e  density clam essential1~- coincicle nritlh 
the Orton illode1 belo\\' 190 knl (3 )  but 
depart from it a t  higher altitudes; a t  1000 
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Fig. 3. Resultant accelerations perpendicular to 
the probe axis of symmetry. These are the h~gh- 
est, lowest, and average accelerations (max. 
min.. mean) recorded in 16-s sampling ~ntervals. 

Altitude above 1-bar level (km) 

Fig. 4. Densltles and pressures from probe decel- 
eratlon data and the reconstructed trajectory The 
n e s  are the Orton model (3) 

km, densities were 100 times the model 
densitv. Pressures obtaineel uncler the  as- 
sumption of hydrostatic eq~~i l i lx iurn extend 
to a threshold LTressure a t  0.01 ubar. 

Temperatures calculated fro111 the equa- 
tion of state appliecl to these profiles reach 
a maximum of 1350 K (Fig. 5 )  ancl suggest 
the  presence of a superimposeci ~vave  struc- 
ture. A constant mean molecular Illass of 
2.215 has been used to define the  gas con- 
stant (19).  T h e  initial pressure chosen a t  
1000 lcnl (Fig. 4 )  1s a reasonable extension 
of the  Ja ta  below 800 lcm. An\;  s ~ ~ b s e y ~ ~ e n t  
refinements will not alter the basic olxer- 
vation: Jupiter's exosphere is hot. 

T h e  Voyager extreme ultraviolet solar 
occultation experilllent (20)  m e a s ~ ~ r e d  a 
Jovian esospheric temperature of 1450 
275 K at  a n  unsneclfled altitude. Subse- 
quent stellar o c c ~ ~ l t a t i o n s  ancl improveel 
analvsis of the  solar occultation, reviewed 
in (211, have \-ielcled lower temperatures 
o n  ~ v h i c h  the  lllodels of the  unner atmo- 
sphere in Fig. 5 were based (3 ) .  A illore 
recent spectroscopic temperature, 540 -+ 
40 K at  the  300-phar  level (221, indicates 
that  the  temperature rises rapidlT- above 
the  300-km level. T h e  significance of this 
measurement was notecl 1'y Yelle et al. 
(21) ,  ~vhose  preferred model (Fig. 51, with 
(dT/d~) , , , ; ,~  = 5 K knl-' a t  375 lcm, matches 
the  exneriillental slone well. 

In  view of Jupiter's great distance from 
the  sun, s ~ ~ c l l  high exosphere temperatures 
req~lire explanation. Such esplanatlons 
have centered o n  two ideas: heating by 

u ,  

gra\~it\- waves propagating up  from the low- 
er atlnosphere (20,  21 ), and heating by soft 
electron collisions o n  H, molecules (23).  
Yelle et al. suggested that the s~lclden tem- 
perature rise above 300 km is associated 
with viscous damping of gravity waves prop- 
agating upward from the  lower a t l~~osphere  
and with the  disappearance of methane, 
~ v h i c h  provides radiative cooling. 

model 
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Alt i tude above I -bar  level (km) 
Fig. 5. Temperatures derived from pressures and 
densties in Fig. 4 and the equaton of state. The 
major departure of the Orion model from the data 
at higher alttudes apparently results from a nearly 
near  interpolaton between widely spaced tem- 
perature observat~ons. The preferred model of 
Yelle et a/. (21) IS based on recent spectroscopc 
data that requre rapid warmlng above 300 km. 
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