Nifio years may be a result of a decrease in
biomass burning during these wetter years
(18).

An analysis of tropospheric O; trends
from 1979 to 1992 for each month (Fig. 3B)
supports this conclusion. The trends are
higher, around 0.35 DU per year, between
August and November versus about 0.15
DU per year at other times.
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Direcf Measurement of Coupling Between
Dendritic Spines and Shafts

Karel Svoboda, David W. Tank, Winfried Denk*

Characterization of the diffusional and electrotonic coupling of spines to the dendritic
shaft is crucial to understanding neuronal integration and synaptic plasticity. Two-photon
photobleaching and photorelease of fluorescein dextran were used to generate concen-
tration gradients between spines and shafts in rat CA1 pyramidal neurons. Diffusional
reequilibration was monitored with two-photon fluorescence imaging. The time course of
reequilibration was exponential, with time constants in the range of 20 to 100 milliseconds,
demonstrating chemical compartmentalization on such time scales. These values imply
that electrical spine neck resistances are unlikely to exceed 150 megohms and more likely

range from 4 to 50 megohms.

Dendritic spines are a prominent feature of
neurons in the central nervous system, but
their function is unknown (1). Speculation
regarding the function of spines has cen-
tered on the diffusional and electrical resis-
tance of the narrow neck that connects
spines to dendritic shafts (2—10). Modeling
studies suggest that synaptically induced
Ca’?™ concentrations in spines could reach
micromolar values (8, 9) and thereby con-
trol biochemical processes central to synap-
tic plasticity (10-12). The spine head
would thus function as a chemical compart-
ment, isolating the concentration dynamics
of intracellular messengers from the parent
shaft and neighboring spines and providing,
for example, the biophysical basis for homo-
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synaptic specificity in long-term potentia-
tion (10, 12). Spine necks have been hy-
pothesized to influence synaptic strength
(2—4), and spines have been proposed to act
as discrete electrical compartments (2, 3,
5). For spine neck conductance comparable
to synaptic conductance, the synaptic cur-
rent depends on neck resistance, and
changes in neck geometry could control
synaptic weight (3, 4). The neck resistance
might be too small to affect synaptic cur-
rents directly, but still large enough to in-
crease synaptic potentials in the head, with
respect to the shaft, sufficiently to limit the
activation of voltage-controlled conduc-
tances to the spine head (5). A measure-
ment of spine neck resistance is required to
test these hypotheses.

Their small size (<1 pwm) has prevented
direct electrophysiological investigation of
spines. Serial-section electron microscopy
(SSEM) has provided information about
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spine geometry, which has been used to
model the biophysical properties of spines
(5-9). However, diffusional and electrical
neck resistances are influenced by intracel-
lular structures such as the spine neck ap-
paratus (5) and are sensitive functions of
neck geometry, which can be subject to
distortion during the fixation process. Ac-
cumulations of Ca’* can be localized to
individual spines (13-16) and can, in fact,
achieve micromolar concentrations (I17).
The spatiotemporal dynamics of intracellu-
lar free Ca?" concentration ([Ca“]i) are,
however, markedly dependent on buffering
and active extrusion (18-20), which are
poorly characterized at the spine level—
precluding an estimate of neck resistance
from [Ca?*], measurements alone. The time
course and spatial localization of changes in
[Ca**], might differ from those for other
diffusible molecules. We have now mea-
sured the diffusional exchange between
spine head and dendritic shaft with the use
of fluorescence recovery after photobleach-
ing (21) and fluorescence decay after pho-
toactivation (22). The quantitative relation
between diffusion and electrical conduction
(23) then allowed us to estimate the spine
neck conductance.

For the photobleaching experiments,
CA1 neurons in rat hippocampal slices
were filled with fluorescein dextran (FD) by
whole-cell perfusion (24) and imaged with
two-photon  laser scanning microscopy
(TPLSM) (Fig. 1A) (25, 26). Dendritic
spines could be clearly resolved (Fig. 1B) as
far as 150 pm below the slice surface. We
used two-photon excitation to achieve (i)
the necessary spatial confinement of
bleaching or photoactivation, crucial for



these experiments, and (ii) imaging resolu-
tion and sectioning in spite of the marked
scattering of light by neural tissue (15, 27,
28). Well-separated spines, horizontally
protruding from the shaft, were selected on
branches off the apical dendrite (Fig. 1C).
Fluorescence measurements and bleaching
were performed by scanning a single line
repeatedly at 2-ms intervals. A high-power
exposure for the duration of a single scan
line (shutter open time, 2 ms; spine illumi-
nation time, ~0.25 ms) was used to bleach
the spine, typically reducing spine fluores-
cence to <50% of its prebleach value (Fig.
1D). We monitored the fluorescence at
power levels that did not produce notice-
able bleaching. The time course was well
fitted by the expected (29, 30) single-expo-
nential recovery (Fig. 1D, inset).

If the time course of fluorescence re-
covery (Fig. 1D) represents diffusional ex-
change between the shaft and spine, then,
by reciprocity, bleaching in the shaft
should result in a delayed fluorescence
decrease in the spine. To test this idea, we
bleached an ~8-pm-long segment of the
shaft and monitored the time course of
fluorescence in an attached spine (Fig. 1E)

or in the shaft (Fig. 1F). The fluorescence

in the spine initially decreased with a time
course similar to that for recovery after
bleaching in the spine, but then reap-
proached its initial value over hundreds of
milliseconds, similar to the time course of
fluorescence recovery in the shaft (Fig.
1F). Experiments based on photorelease
proved more difficult (31), but gave simi-
lar results. One such experiment is shown
in Fig. 2: FD was released and measured in
a spine head.

To interpret our data, we used a geo-
metric model (3, 5, 32) consisting of a
spine head, with volume V,, connected by
a thin neck to a large dendritic shaft (Fig.
3A). The diffusional neck resistance
(W), the diffusional FD current through
the neck (J), the FD bulk diffusion coef-
ficient in the cytoplasm (Dgp), and the FD
concentrations in the head and shaft, (¢,
and c,, respectively) are related by W _ =
Dep(cp, — ¢)/J. The time course of ¢, after
a concentration jump in the head (Ac}) is
given by ¢, = Acp exp(—t/t) + c, (33),
where t is time and the equilibration time
constant (1) is given by W V,/Dp,. We
found 22 < 7 < 96 ms (n = 36) for
photobleaching and 30 < 7 < 90 ms for
photorelease (n = 8). For most spine
heads, it was possible to estimate their
distance from the shaft (34). Spine heads
far from the shaft always had long time
constants, but a wide range of time con-
stants was apparent for spine heads close
to the shaft (Fig. 3, B to D).

A close analogy exists between diffusion
currents driven by concentration gradients

Fig. 1. TPLSM imaging of CA1 pyramidal cells and pho-

tobleaching measurement of diffusional coupling be-

tween spines and shafts. Images were smoothed and F
contrast enhanced. (A) CA1 pyramidal cell with apical
dendritic tree (maximum value projection of 81 images,
1-um steps, from —130 to —48 pm below the slice
surface). (B) Apical dendrite and side branches (projec-
tion of 35 images, 0.6-pm steps, from —100t0 —79 pm).
(C) Small secondary dendritic side branch with spines
(projection of 24 images, 0.2-pm steps, ~—100 pm

REPORTS

A

200 ms

'I Max
Plaser 0

deep). The brightest spine was chosen for the diffusion measurement. Dashed line indicates location of
line scan for bleaching and fluorescence measurements. (D to F) (Left panels) Schematics depicting
experimental protocols. Thin lines, location of fluorescence measurement; thick lines, location of bleach-
ing. Light shading, unbleached fluorescence; dark shading, bleached fluorescence. (Right panels) Time
course of fluorescence before and after photobleaching. (D) Bleaching in the spine and fluorescence
measurement in the spine (average of seven scans). Experiments could be repeated at least 10 times
without changes in either spine morphology or the time course of fluorescence recovery. (Inset) Semi-
logarithmic plot of fluorescence [In(—AF)] time course after bleaching. (E) Bleaching in the shaft and
fluorescence measurement in the spine. (F) Bleaching in the shaft and fluorescence measurement in the

shaft. (Bottom) Schematic of time course of excitation intensity (P,

and electrical currents driven by electrical
potential gradients (23). Because diffu-
sional FD current in our experiments and
synaptic current both have to pass the same
spine neck (Fig. 3A), the diffusion equili-
bration time constant (7) can be used to
estimate the electrical neck resistance as R |
= p,W_, where p, is the cytoplasmic resis-
tivity. Together with T = W_V, /D, we
get R, = 1p,Dgy/V,,, which holds indepen-
dent of the detailed neck shape and the
presence of intraneck organelles. We as-
sume that the cytoplasmic space is equally
accessible to ions (carrying the electrical
current) and dextran molecules (carrying
the diffusional current), and that Dy, p, is
uniform.

The parameter V,, necessary to compute
R,, was measured from total spine fluores-
cence (35) (mean, 0.12 wm?; range, 0.009
to 0.56 pm’; n = 80) (Fig. 3E). Our spine
head volume distribution is consistent with

SSEM measurements (7, 36, 37). Signal-
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) for all experiments.

laser/

pm

W 50%
s v - - - TSNS
Release
pulse T
Fig. 2. Measurement of diffusional relaxation after
a concentration jump in a spine head generated
by photorelease of fluorescence. (Top left) Sche-
matic of experimental protocol. Thin line, location
of fluorescence measurement; thick line, location
of photorelease. Light shading, released fluores-
cence; dark shading, low background fluores-
cence. (Top right) Line scan image of spine be-
fore and after photoactivation (vertical, position
along the line scan; horizontal, time). Light pixel
values correspond to bright fluorescence. (Bot-

tom) Time course of fluorescence derived from
line scan image.
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Fig. 3. (A) Simple spine model. (Left) The syn-
aptic current (/) is driven by the electrochemi-
cal driving force, E,. (Right) The diffusional cur-
rent (J) is driven by the concentration difference
between spine head and shaft (c, — c¢g). Both
currents must pass the narrow spine neck, en-
countering resistances R,, and W,,, respectively.
(B to D) Distribution of time constants (t) for
diffusional relaxation for spine heads with differ-
ent neck lengths. Data were included only when
7 could be determined with an uncertainty of less
than =25%. (B) Long spines (>1 um). (C) Inter-
mediate-length spines (0.5 to 1.0 wm). (D) Short
spines (<0.5 uwm). (E) Distribution of spine vol-
umes measured from total spine fluorescence
(85). Shading indicates the rahge of spine vol-
umes used for diffusion measurements.
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level limitations forced us to use bright
spines (0.2 < V,, < 0.55 wm’, estimated)
(Fig. 3E) for diffusion measurements. Val-
ues of p, ~ 250 ohm-cm (38, 39) and Dy, =
0.4 X 105 cm?/s (30) yield a likely range of
neck resistances from 4 to 50 megohms,
similar to values derived from morphometry
(7). With the highest estimates for p;, Dgpy,
and excluded volume fraction (40), the up-
per bound is R, ~150 megohms. Although
we obtained data only for the brightest 10%
of spines, our R, estimates may still apply to
all spines because SSEM shows no correla-
tion between spine head volume, neck
length, and neck cross-sectional area (7,
36). The smallest spines would, however,
show faster diffusional equilibration.

We have measured diffusional relaxation
times for individual spines. Second messen-
gers remain confined to an activated spine
on this time scale, large enzymes for even
longer. This confinement may be important
for the induction of synapse-specific plastic-
ity, in which the diffusible messengers
Ca’*, cyclic adenosine 3',5’-monophos-
phate, and inositol 1,4,5-triphosphate, as
well as various kinases and phosphatases,
are thought to be involved (12, 41). Re-
strictions on diffusional exchange would
also result in an accumulation of Na™ dur-
ing synaptic activation, with a transient
reduction in the electrochemical driving
force (42). It has also been suggested that
Na™ plays a direct biochemical role in the
induction of long-term depression in Pur-
kinje cells (43).

Our estimate of spine neck conduc-
tance, 1/R, (>7000 pS), is much larger
than excitatory synaptic conductances
measured for CA1 pyramidal cells (~200
pS) (44). Thus, our measurements rule out
the possibility that changes in spine neck
geometry have a significant role in con-
trolling synaptic weight (2-7, 10, 32, 45).
But can spines act as separate electrogenic
compartments, as has been suggested by
the observation of hyperpolarization-sen-
sitive Ca?* accumulation in Purkinje cell
spines (16)? The largest published values
for unitary synaptic currents in pyramidal
cells measured at the soma are ~20 pA in
CA1 (44, 46, 47) and ~60 pA in Purkinje
cells (48). The resulting voltage decre-
ments across the spine neck, assuming
similar spine geometry in these two cell
types (6) and with our upper bound esti-
mate for neck resistance (150 megohms),
appear sufficient (<9 mV) in Purkinje
cells (16), but too small (<3 mV) in CA1
pyramidal cells, for spine-specific activa-
tion of voltage-gated Ca?" channels. Be-
cause of dendritic filtering (49), the cur-
rents at the spine may be larger than those
at the soma; spine-specific electrogenic
events in CA1 pyramidal cells therefore
cannot be definitely ruled out.
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Cell Growth Arrest and Induction of Cyclin-
Dependent Kinase Inhibitor p21WAF1/CIP1
Mediated by STAT1

Yue E. Chin,” Motoo Kitagawa,* Wu-Chou S. Su, Zhi-Hao You,
Yoshiki lwamoto, Xin-Yuan Fuf

Signal transducers and activators of transcription (STAT) proteins can be conditionally
activated in response to epidermal growth factor (EGF) and interferon (IFN)—y. STAT
activation was correlated with cell growth inhibition in response to EGF and IFN-y.
Activated STAT proteins specifically recognized the conserved STAT-responsive ele-
ments in the promoter of the gene encoding the cyclin-dependent kinase (CDK) inhibitor
p21WAF1/CIP1 and regulated the induction of p21 messenger RNA. IFN-v did not inhibit the
growth of U3A cells, which are deficient in STAT1, but did inhibit the growth of U3A cells
into which STAT1a was reintroduced. Thus, STAT1 protein is essential for cell growth
suppression in response to IFN-y. The STAT signaling pathway appears to negatively
regulate the cell cycle by inducing CDK inhibitors in response to cytokines.

The cell cycle is controlled by a family of
CDKs, ‘which can be negatively regulated
by families of CDK inhibitors (1) such as
p2 I WAFLCIPLCAPL (9 3) " An increase of
the amount of p21 relative to the amount of
cyclin-bound CDK may convert active
CDK complexes into inactive ones (1, 4).
Some of the genes that control the cell
cycle are assumed to be regulated by cyto-
kine-induced signals. Nevertheless, the mo-
lecular basis for such signaling in responses
to cytokines is not well defined. A signaling
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pathway exists in which tyrosine kinases
phosphorylate and activate STAT proteins
containing a conserved Src homology 2
(SH2) domain (5, 6). The activated STAT
proteins translocate from the cytoplasm to
the nucleus (6, 7), and many immediate-
early responsive genes are thought to be
regulated by activated STAT proteins and
their partner proteins (8).

EGF often stimulates cell proliferation,
whereas IFNs usually inhibit cell prolifera-
tion. However, the growth of A431 cells,
which are derived from epidermoid carcino-
mas, is inhibited by EGF (9). EGF, like
IFNs, can induce tyrosine phosphorylation
and activation of STAT proteins (10-12),
especially in A431 cells. We therefore de-
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