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Direct Measurement of Coupling Between spine geometry, ~ ~ 1 1 ~ ~ 1 ~  has l ~ e e n  used to 
mo~ie l  the biophysical yrc>perrle\ of spilles 

Dendritic Spines and Shafts (5-9). However, ( l i t t~~sional  a n J  electrical 
neck resi.tances are ~ i ~ t l u e i ~ c e ~ i  h \ ~  intracel- 

Karel Svoboda, David W. Tank, Winfried Denk* 

Characterization of the diffusional and electrotonic coupling of spines to the dendritic 
shaft is crucial to understanding neuronal integration and synaptic plasticity. Two-photon 
photobleaching and photorelease of fluorescein dextran were used to generate concen- 
tration gradients between spines and shafts in rat CAI  pyramidal neurons. Diffusional 
reequilibration was monitored with two-photon fluorescence imaging. The time course of 
reequilibration was exponential, with time constants in the range of 20 to 100 milliseconds, 
demonstrating chemical compartmentalization on such time scales. These values imply 
that electrical spine neck resistances are unlikely to exceed 150 megohms and more likely 
range from 4 to 50 megohms. 

DeilLiri t ic spines are ,1 prominent fe,iture ot 
neuron\ in the central nervous system, hut 
their f ~ ~ i ~ c t i o i ~  is ~ ~ n k n o \ v n  ( I  ) .  Speculatioi~ 
regiiriliny the f ~ l n c t i o i ~  of spines has ce11- 
tereii o n  the i l i t f~~sion,~l  ai~cl electrical resis- 
tance o t  the narrolv neck t h , ~ t  coi~nccts  
spine\ to iienilritlc shafts (2-10). I ' lo i le l~i~g 
st~ldies 5nfieest that synapticall\- induceii 
Ca'- concentr, i t ion~ in .~?ines co~ilil reach 
lllici-olllolar 1 - a l ~ ~ e s  (8. 9 )  and thereby con- 
trol biochemical processe, centr,il to synap- 
tic plasticity (lC-12). T h e  spine he,icl 
n.o~il,l thus f i ~ n c t i o i ~  as a chemical cornpart- 
ment,  isolating the  collcentratioil ~iynamics 
of iiltr,icell~ilar me-engers frolll the pa re i~ t  
shaft a n ~ l  nelghhorlilg .pines and l.ro~iLling. 
ii)r example, the hiophy.ical hasis for hoino- 
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syniiptic >pecificity 111 long-term potenti,i- 
tion (13 .  12) .  Spine i~ecks  11,ive heel1 hy- 
lx)theslreii ti) influence hynaptic s t rengt l~  
(2-4), c i i~i l  spine. have been yroposeii to ,ict 
as discrete electrical compartment. ( 2 ,  3 ,  
5 ) .  For iplne neck c ~ r i ~ i ~ i c t , ~ n c e  comparal-le 
to s\-naptlc c o l ~ i l ~ ~ c t a l ~ c e ,  the  svnaptic cnr- 
rent ilepenils 011 neck re.i.tai~ce, a11J 
changes ill neck eeometry co~ilil cont~-ol  
synaptic n-eieht ( 3 .  4 ) .  T h e  neck resihtance 
might l?e too small to affect synaptic c ~ i r -  
rents iiirectly, b ~ i t  t i l l  large e i ~ o ~ ~ g l ~  to ill- 
crease synaptic potentials in the h e a ~ l ,  with 
respect to the shaft, sufi'icientl\- to linlit the 
actir.,itic,r-i ot 1.oltage-controlled c o n i l ~ ~ c -  
ta i~ces  to the .pine head (5 ) .  A measure- 
illeilt o t  hplne neck 1-es~st,ince i h  rei l~~ireii  to 
test these hypotheses. 

Their sm,ill size (< 1 p m )  has prer~entecl 
direct electroC1~y.iological in\,estigation of 
,ylne\. Ser1,il-qecticnn electron microscopy 
(SSEL?) 1x1s pro\.iiied illt;>rmat~on abont 

1~1lar structures auch as the spine neck ap- 
Lxratns 15) and are sei~hitive f~~inctlon. of 
neck geometry, \vhich can be \ul-iject to 
i i i~ tor t ion cl~lrinir the flsatlon tlrocess. r\c- 
~ ~ ~ i l l ~ i l ; i t i o i l s  of C C i 2  call be loc,ili:ed to 
indlr~iiiual spines (1 3-1 6) and can,  in fact, 
ac11ie1.e nx~cromolar concentra t~ons  ( 17) .  
T h e  spatioteil~pcxal dynamics of ~ n t r , i c e l l ~ ~ -  
lar tree C a ' ~ '  co i~cc~~ t i . a t ion  ( [Ca '~ '  I , )  are. 
ho\ve\,ei-, markedly ;iepenilent 011 hufferin: 
and act i r~e  extrLlsion (18-LC), n.hich Are 
pL>~)rly cl~aractesizeJ ,it the  spine level- 
p r e c l ~ ~ ~ l i n f i  ,111 eitim;ite of neck 1-eqlitance 
frolll [Ca2+] ,  meas~irements alone. T h e  tune 
course a i~ i i  spatial locali:atio~~ of c l ~ a ~ l g e s  in 
[Ca'-1, might differ fronl those for other 
iliff~lsihle molecules. W e  have i ~ ~ n v  mea- 
iui-ed the ilitt~~slon,il exchange l-et\veen 
spine heiiii nnii ~iendrit ic illaft ~ v i t h  the Lise 
o t  f l ~ ~ o r e s c e ~ ~ c e  recover\- after photobleach- 
111g (21 ) and fl~~orehcence ilecav after pho- 
toactivatlon (22 ) .  T h e  i l~l,~ntitative relation 
hetn-eel1 iiiff~icloi~ and electrical c o n i i ~ ~ c t i o i ~  
(23)  the11 allorve~i us to estimate the syi i~e  
neck conductance. 

For the pl~otohle,iching experimei~ts,  
C X 1  neuron5 in r,it hippr~campal sl~ccq 
ne re  filled ~ v i t l ~  tl~iorescein dexti-an (FD) by 
n.hole-cell perf~isinn (24)  and imaeeii n.it11 
tn.o-yhotoi~ laser scanning microscopy 
(TPLSht)  (Fig. 1 A )  (25 ,  26).  l l endr~ t i c  
spune c o ~ ~ l ~ l  he cle,irly resolveil (FI. 1R) ,is 
far ;is 159 p ~ n  \-elon the slice SLII-face. W e  
~lqed t\vo-photo11 excitation to ,icl~ieve ( i )  



these experiments, and (ii) imaging resolu- 
tion and sectioning in spite of the marked 
scattering of light by neural tissue (15, 27, 
28). Well-separated spines, horizontally 
protruding from the shaft, were selected on 
branches off the apical dendrite (Fig. 1C). 
Fluorescence measurements and bleaching cz 
were performed by scanning a single line 
repeatedly at 2-ms intervals. A high-power 
exposure for the duration of a single scan 
line (shutter open time, 2 ms; spine illumi- 
nation time, -0.25 ms) was used to bleach 
the spine, typically reducing spine fluores- 
cence to 4 0 %  of its prebleach value (Fig. 
ID). We monitored the fluorescence at 
Dower levels that did not ~roduce notice- 
able bleaching. The time course was well 
fitted by the expected (29, 30) single-expo- 
nential recovery (Fig. ID, inset). 

If the time course of fluorescence re- 
covery (Fig. ID) represents diffusional ex- 
change between the shaft and spine, then, 
by reciprocity, bleaching in the shaft 
should result in a delayed fluorescence 
decrease in the s ~ i n e .  To test this idea. we 
bleached an -8-km-long segment of the 
shaft and monitored the time course of 
fluorescence in an attached spine (Fig. 1E) 
or in the shaft (Fig. IF). The fluorescence, 
in the spine initially decreased with a time 
course similar to that for recovery after 
bleaching in the spine, but then reap- 
proached its initial value over hundreds of 
milliseconds, similar to the time course of 
fluorescence recovery in the shaft (Fig. 
IF). Experiments based on photorelease 
proved more difficult (31 ), but gave simi- 
lar results. One such experiment is shown 
in Fig. 2: FD was released and measured in 
a spine head. 

To interpret our data, we used a geo- 
metric model (3, 5 ,  32) consisting of a 
spine head, with volume Vh, connected by 
a thin neck to a large dendritic shaft (Fig. 
3A). The diffusional neck resistance 
(W,), the diffusional FD current through 
the neck ( J ) ,  the FD bulk diffusion coef- 
ficient in the cytoplasm (D,,), and the FD 
concentrations in the head and shaft, (ch 
and c,, respectively) are related by Wn = 
DFD(ch - c,)/J. The time course of ch after 
a concentration jump in the head (Ac;) is 
given by ch = Ac; exp(- t /~)  + c, (33), 
where t is time and the equilibration time 
constant (7) is given by WnVh/DF,. We 
found 22 < T < 96 ms (n = 36) for 
photobleaching and 30 < T < 90 ms for 
photorelease (n = 8). For most spine 
heads, it was possible to estimate their 
distance from the shaft (34). S ~ i n e  heads . , .  
far from the shaft always had long time 
constants. but a wide range of time con- - 
stants was apparent for spine heads close 
to the shaft (Fie. 3. B to D). . - .  

A close analogy exists beiween diffusion 
currents driven by concentration gradients 

Fig. 1. TPLSM niaglnq of CAI  pyram~c I pho- 
tobleach~na measurement of d l f f ~ ~ l ~ r i d i  LUUUIIII~ be- I '  

tween soiies and shafts. lmaaes were smoothei and F AhL--------- 
contrast' enhanced. (A) CAI pyramidal cell with apical 
dendritic tree (maximum value projection of 81 images, 50% 

1 -pm steps. from - 130 to -48 pm below the slice 
surface). (61 Apical dendrite and side branches (projec- 
tion of 35 images, 0.6-wm steps, from -1 00 to -79 ~ m ) .  n 1 Max 
(C) Small secondary dendritic side branch with spines 11 6ase1 lo 
(projection of 24 images. 0.2-pm steps, --I00 pm 
deep). The brightest spine was chosen for the diffusion measurement. Dashed line indicates location of 
line scan for bleaching and fluorescence measurements. (D to F) (Left panels) Schematics dep~cting 
experimental protocols. Thin lines, location of fluorescence measurement; thick lines, location of bleach- 
ing. Light shading, unbleached fluorescence; dark shading, bleached fluorescence. (Right panels) Time 
course of fluorescence before and after photobleaching. (D) Bleaching in the spine and fluorescence 
measurement in the spine (average of seven scans). Experiments could be repeated at least 10 t~mes 
without changes in either spine morphology or the time course of fluorescence recovery. (Inset) Semi- 
logarithmic plot of fluorescence [In(-AR] time course after bleaching. (E) Bleaching in the shaft and 
fluorescence measurement in the spine. (F) Bleaching in the shaft and fluorescence measurement in the 
shaft. (Bottom) Schematic of time course of excitation intensity (P,,,,,) for all experiments. 

and electrlcal currents drlven by electrlcal 
potential gradients (23). Because dlffu- 
s~onal FD current m our experiments and 
synaptlc current both have to pass the same 
spine neck (Fig. 3A), the diffusion equili- 
bration time constant (7) can be used to 
estimate the electrical neck resistance as R, 
= piWn, where pi is the cytoplasmic resis- .,.I&+ - -  - - - - - - 
tivity. Together with T = WnVh/DFD, we 
get R, = 7piDFL,/Vh, which holds indepen- Release t - 200 ms 5ph 

dent of the detailed neck shape and the pulse 

presence of intraneck organelles. We as- Fig. 2. Measurement of diffusional relaxation after 
sume that the cytoplasmic space is equally a concentration jump in a spine head generated 
accessible to ions (carrying the electrical by photorelease of fluorescence. (lop left) Sche- 
current) and dextran molecules (carrying matic of experimental protocol. Thin line, location 
the diffusional current), and that D,, pi is of fluorescence measurement; thick line, location 

uniform. of photorelease. Light shading, released fluores- 
cence; dark shading, low background fluores- The parameter Vh, necessary to compute cence. (lop right) Line scan image of spine be- 

Rny was measured from 'pine fore and after photoactivation (vertical, position 
cence (35) (mean! 0.12 km3; range* 0.0°9 along the line scan; horizontal, time). Light pixel 
to 0.56 pm3; n = 80) (Fig- 3E). Our spine values correspond to bright fluorescence. (Bot- 
head volume distribution is consistent with tom) Time course of fluorescence derived from 
SSEM measurements (7, 36, 37). Signal- linescan image. 
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95% 0, and 5% CO, (pH 7.3, os~nolar~ty, 290 to 300 
geometry ha\,e a significant role in con- mosmol) We recorded w t h  a patch-clamp a~npl fer  

Range for diffusion trollillg synaptic weight (2-7, 10,  32,  45) .  (EPC-7; L~st  Electron~cs) in voltage-clamp mode. 
measurements Electrodes had resstances of 5 to 8 megohms when 

e--.-----, But can spines act as separate electsogenic - f~lled w ~ t h  Internal solut~on (pH 7.2 to 7.3; 280 
compartments, as has been suggested by ~nosmo~)  conta~nlng 135 r n ~  potasslum methane- 

L 

d 5 20- 
z 

10- 

the obser\,ation of hyperpolarization-sen- sulfonate (Fuka). 10 mM Hepes-KOH. 2 mM MgCl,, 

siti1.e Ca2+ a c c ~ ~ m u l a t i o n  in Purkinje cell 0.2 mM EGTA, 3 mM adenosne tr~phosphate (Na+ 
salt) and 0.1 to 0.25 mM FD (3 kD; Molecular 

spines (16)! T h e  largest published v a l ~ ~ e s  
0 0.1 0.2 0.3 0.4 0.5 0.6 Probes). Access resistances after break-in were 10 

Spine volume (pm3) for unitary synaptic currents in pyramidal to 30 megohms. Measurements were started 30 m n  

cells measured at the soma are -20 pA in after break-in. Action potentials and hod~ng  currents 
Fig. 3. (A) Simple splne model. (Left) The syn- were monitored to assess cell viability. 
aptic current (I,,,) is driven by the electrochemi- C A I  (44 ,  46 ,  47)  and -6O pA in Purk in je  25 We used a modifed laserscannng microscope (Bo-  

cal drlvng force, E,,,,, (Right) The diffusional cur. c e 1 1 d 4 8 ) '  The decre- rad MRC 600) and a 6 3 x  objective (numerical aper- 

rent (J) is driven by the concentration difference "ents across the  spille neck, ass~llning ture. 0.9; Carl Zeiss). The hght sourcefortwo-photon 
Imaging was a pulsed T.sapph~re laser (Clark lnstru- 

between spine head and shaft (c,, - c,). Both silllilar spille geolnetry in these two cell [pulse duration (7,,,,,j, -150 fs; repetition 
currents must pass the narrow spine neck, en- types (6 )  and with our upper bo~lnd  esti- rate (f ,). 100 MHz; average power at the speclmen 
countering resistances R, and W,,, respectively, Inate for neck resistance (150 megohms), b,,,,), <50 mW: wavelength (A), 840 nm]. The light 

source for two-photon photobleaching was a sec- (B to Dl Distribution of time constants (TI for appear sufficient (<9 mV) in P ~ ~ r k i n j e  and pulsed laser (TsLlna,nl; Spectra diffusional relaxation for spine heads with differ- (16) ,  but too slnall ( < 3  l n ~ )  in Physics) IT,,, -100 fs; f ,. 82 MHz; p ,,,,, <ZOO 
en' neck lengths. Data were included only when pysal,lidal cells, filr sL~ille.specific acti\,a. mVV: A = 715 nm, which IS close to the opt~mal 
T could be determined with an uncertainty of less t ion of voltage-gated Ca" channels. Be- excitat~on wavelength for fluorescen (C. Xu and W. 
than ?25%, (6) Long spines (> l  pm). (C) nter- W. Webb, J. Opt  Soc. B 13, 481 (1 996)l. The lasers 
mediate-length spines (0,5 to ,0 Fm), Short cause of Jendritic filtering (49) ,  the  cur- were super~mposed to submicron accuracy ~n the 

spines ( < o , ~  Fm), (E) ~ i ~ ~ ~ i b ~ ~ i ~ ~  of spine v o  rents a t  the spine may be larger than those speclnen plane and scanned by the same pair of 

umes measured from total spine fluorescence at the  soma; spine-specific electrogenic galvomirrors, but they were underthe control of sep- 
arate shutters. For exper~nentation at hgh  magnfl- 

(35). Shading indicates the range of spine "01- events in C A I  pyramidal cells therefore cation ( t~me resolution, 2 ms per line. 8.14 p m  11ne 
umes used for diffuson measurements. cannot he ciefinitely n ~ l e d  O L I ~ .  length) the dendr~te was a~gned w~ th  the scan drec- 
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CDKs, which can be negatively regulated 
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increase of 
the amount of p21 relative to the amount of 
cyclin-bound CDK may convert active 
CDK complexes into inactive ones (I , 4). 
Some of the genes that control the cell 
cycle are assumed to be regulated by cyto-
kine-induced signals. Nevertheless, the mo
lecular basis for such signaling in responses 
to cytokines is not well defined. A signaling 
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pathway exists in which tyrosine kinases 
phosphorylate and activate STAT proteins 
containing a conserved Src homology 2 
(SH2) domain (5, 6). The activated STAT 
proteins translocate from the cytoplasm to 
the nucleus (6, 7), and many immediate-
early responsive genes are thought to be 
regulated by activated STAT proteins and 
their partner proteins (8). 

EGF often stimulates cell proliferation, 
whereas IFNs usually inhibit cell prolifera
tion. However, the growth of A431 cells, 
which are derived from epidermoid carcino
mas, is inhibited by EGF (9). EGF, like 
IFNs, can induce tyrosine phosphorylation 
and activation of STAT proteins (10-12), 
especially in A431 cells. We therefore de-

Cell Growth Arrest and Induction of Cyclin-
Dependent Kinase Inhibitor P 21 W A F 1 / C I P 1 

Mediated by STAT1 
Yue E. Chin,* Motoo Kitagawa,* Wu-Chou S. Su, Zhi-Hao You, 

Yoshiki Iwamoto, Xin-Yuan Fuf 

Signal transducers and activators of transcription (STAT) proteins can be conditionally 
activated in response to epidermal growth factor (EGF) and interferon (IFN)-^. STAT 
activation was correlated with cell growth inhibition in response to EGF and IFN-7. 
Activated STAT proteins specifically recognized the conserved STAT-responsive ele
ments in the promoter of the gene encoding the cyclin-dependent kinase (CDK) inhibitor 
p2i wAFi/cipi anc | regulated the induction of p21 messenger RNA. IFN-7 did not inhibit the 
growth of U3A cells, which are deficient in STAT1, but did inhibit the growth of U3A cells 
into which STATIa was reintroduced. Thus, STAT1 protein is essential for cell growth 
suppression in response to IFN-7. The STAT signaling pathway appears to negatively 
regulate the cell cycle by inducing CDK inhibitors in response to cytokines. 
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