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Juvenile Skeletal Structure and the
Reproductive Habits of Dinosaurs

Nicholas R. Geist and Terry D. Jones

Skeletal ontogeny in extant archosaurians (crocodilians and birds) indicates that the
morphology of the perinatal pelvic girdle is an indicator of overall developmental maturity
[that is, altriciality (nestbound) versus precociality (mobile and relatively independent)].
Comparison of the skeletal anatomy of perinatal extant archosaurians and perinatal
dinosaurs suggests that known dinosaur hatchlings were precocial. These data are con-
sistent with the overall similarity in nesting behavior of dinosaurs and modern crocodilians.

Fossils of juvenile dinosaurs can provide
key information regarding dinosaur life his-
tory and physiology. To evaluate whether
hatchling dinosaurs were altricial or preco-
cial, we examined the skeletal structure in a
variety of extant, perinatal precocial birds
[emu (Dromaius), Mallee-Fowl (Leipoa), os-
trich (Struthio), brush turkey (Talegalla)],
perinatal altricial birds [macaw (Ara), cock-
atoo (Cacatua), eagle (Haliaeetus), starling
(Stwrnus)], and perinatal crocodilians (Alli-
gator, Caiman) (all crocodilians are preco-
cial at birth) and compared their character-
istics with the skeletal features of perinatal
dinosaurs (1).

This comparison reveals that the extent
of ossification of the pelves at hatching may
be a reliable indicator of the altricial or
precocial nature of archosaurian neonates.
Specifically, the pelves of late-fetal croc-
odilians and precocial birds are more ossi-
fied than those of altricial birds (Fig. 1 and
Table 1) (2). This observation is consistent
with the structure of the major locomotor
muscles of the hindlimb, many of which
originate from the pelvic girdle in both
crocodilians and birds. Juveniles that are
active cursors immediately upon hatching
require a rigid, stable site of origin for limb
musculature. In contrast, pelves of perinatal
altricial birds are poorly ossified. However,
even altricial juveniles become active with-
in the nest in a matter of days after hatch-
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ing, and postnatal ossification of the pelvic
girdle is relatively rapid. Nearly complete
ossification may take place within the first
week. Consequently, if a fossilized embryo
with well-ossified pelvic elements can be
reliably identified, this criterion for distin-
guishing altricial from precocial neonates
may be applied with some assurance. Sig-
nificantly, the pelvic girdles of embryonic
Maiasaura and Orodromeus (1), as well as all
other known dinosaur embryos, including
Hypacrosaurus (Ornithischia) (3), Oviraptor
(Theropoda) (4), and Therizinosaurus (Seg-
nosauria) (5), were apparently well ossified.
These observations indicate that precocial-
ity was possibly widespread in dinosaurs.

Earlier hypotheses regarding altriciality
in certain ornithischian dinosaurs were
based on long bone epiphyseal ossification
(I, 6). Long bone elongation in all extant
fetal archosaurians (birds and crocodilians)
is centered in a massive cartilaginous cone
at each end of the shaft. The cartilaginous
cone consists of a cap of articular cartilage
that overlies a distinct growth zone of pro-
liferating chondrocytes (cartilage-produc-
ing cells). These chondrocytes, in turn, rest
above a large, temporary mass of hyaline
cartilage.

At the perinatal stage in all extant ar-
chosaurians, whether altricial or precocial,
the growth zone differentiates into distinct
regions of proliferating and hypertrophying
chondrocytes. The chondrocytes them-
selves are superficial to a region of calcified
cartilage that is interspersed with spongy



endochondral ossification (Fig. 2). Long
bone elongation proceeds as chondrocytes
continuously produce new cartilage that be-
comes calcified and is subsequently replaced
by spongy endochondral bone. At this de-
velopmental stage and thereafter, the
growth zone follows a curve roughly parallel
to the articular surface, which consists of a
superficial cap of undifferentiated cartilage
and fibrocartilage. Identical patterns of long
bone development in other altricial and
precocial birds [for example, Muscovy duck
(Cairina), rock dove (Columba), Japanese
quail (Coturnix), finch (Lonchura), budger-
igar (Melopsittacus), and barred buttonquail
(Turnix)] have also been described else-
where (2).

A series of skeletons from embryonic and
hatchling ornithopod dinosaurs have re-
cently been discovered. It has been suggest-
ed that apparently incompletely ossified
femoral epiphyses in neonates of the hadro-
saur Maiasaura (Archosauria: Ornithischia)

Fig. 1. Ossification of the pelves in representative
hatchling birds: (A) altricial or nestbound [starling
(Sturnus)] and (B) precocial or mobile [Mallee-Fow!
(Leipoa) (Yale Peabody Museum, specimen
1171)]. The pelvis of Lejpoa is completely ossified
(the dashed line outlines the ossified posterior re-
gion of the ilium); the corresponding region of the
ilium of Sturnus is cartilaginous. Pelves of perinatal
altricial birds are significantly less ossified than
those of perinatal crocodilians and precocial birds
at equivalent stages of development (preparations
are from cleared and stained specimens).

indicates altriciality. The femoral epiphyses
are composed of spongy endochondral bone
overlain by a thin layer of calcified cartilage
(1). There is no obvious indication of the

T L e q"&.} P
Fig. 2. Light micrograph of a longitudinal (sagittal)
section of the distal femoral epiphysis in a 2-week-
old emu (Dromaius). The pattern of long bone
development illustrated here is typical of crocodil-
ians as well as both precocial and altricial birds at
equivalent stages of development. AC, articular
fibrocartilage; EB, endochondral bone; HZ, zone
of hypertrophication and calcification; PZ, zone of
proliferation; UC, undifferentiated cartilage. Mag-
nification: X30.
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articular fibrocartilaginous cap that is
present on the long bones of all extant
archosaurians. Consequently, the knee joint
in nestling Maiasaura was assumed to have
been functionally immature (6). However,
the articular fibrocartilage cap is unlikely to
fossilize (7). Moreover, the apparently in-
complete epiphysis of Maiasaura does not

Table 1. Hatchling condition (altricial or precocial)
and pelvic development in a variety of birds and
crocodilians. All known dinosaur perinates had
well-ossified pelves.

. Hatchling -
Species condition (% 7
Poorly ossified pelvis

Budgerigar (Melopsittacus)* Atricial
Cockatoo (Cacatua) Altricial

Dove (Columba)* Altricial

Finch (Lonchura)* Altricial
Macaw (Ara) Altricial
Starling (Sturnus) Altricial

Eagle (Haliaeetus) Semi-altricial

Well-ossified pelvis

Brush turkey (Talegalla) Precocial
Buttonquail (Turnix)* Precocial
Duck (Cairina)* Precocial
Emu (Dromaius) Precocial
Mallee-Fowl (Lejpoa) Precocial
Ostrich (Struthio) Precocial
Quail (Coturnix)* Precocial
Alligator Precocial
Caiman Precocial

*Data from Starck (2).

Fig. 3. Neonatal distal femoral epiphysis (frontal view) from (A) the ornithischian dinosaur Maiasaura

(Princeton University Museum, specimen 23438) and from three precocial, extant archosaurians includ-
ing (B) emu (Dromaius), (C) Mallee-Fowl (Leipoa) (Yale Peabody Museum, specimen 1195), and (D)
alligator (Alligator). The distal femoral epiphysis of Maiasaura closely resembles those of extant archo-
saurians insofar as all are composed (in part) of endochondral bone overlain by a thin layer of calcified
cartilage. The femora of the extant specimens were prepared by bacterial maceration to remove the

articular cartilaginous caps.
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differ significantly from the femoral epiphy-
ses of extant juvenile crocodilians and pre-
cocial birds when the latter are prepared by
bacterial maceration to remove the articular
cartilage cap (Fig. 3). Thus, long bones of
Maiasaura probably originally had a typical
archosaurian articular fibrocartilaginous cap.
In life, this dinosaur’s long bones were prob-
ably similar to those of all extant archosau-
rians, whether altricial or precocial. More-
over, the femoral growth plate of perinatal
Maiasaura is similar to that of a 2-week-old
chicken (Gallus), a thoroughly precocial
taxon (8).

Embryonic femora of the hypsiloph-
odont ornithopod Orodromeus (Archosau-
ria: Ornithischia) were described as having
“well formed, smooth condyles which, al-
though fully ossified in appearance, are
formed entirely of calcified cartilage. Endo-
chondral bone is not observed in the epiph-
yseal or metaphyseal regions” (I, p. 256).
This description is problematic insofar as in
extant, perinatal archosaurians, whether al-
tricial or precocial, articular condyles of the
long bones are not composed of calcified
cartilage. Calcified cartilage forms in the
deepest layer of the growth zone, where it is
a scaffold for the deposition of new endo-
chondral bone. Without the association be-
tween calcified cartilage and endochondral
bone, there is no capacity for long bone
elongation. Consequently, we suggest that
interpretation of perinatal long bone struc-
ture in Orodromeus deserves reexamination.

Data from extant specimens indicate
that there are no qualitative differences in
the development of long bone epiphyseal
structure in archosaurians, whether altricial
or precocial. It has also been suggested that
the lack of well-formed processes for muscle
attachment (for example, trochanteric pro-
cesses) in neonatal Maiasaura may be indic-
ative of its altricial nature (I1). However,
well-formed processes did not exist in any of
our precocial or altricial neonatal speci-
mens. These processes apparently form
much later in response to muscle-induced
mechanical stresses on the long bones.

It has also been hypothesized that con-
temporaneous preservation of juvenile and
adult Maiasaura in or near presumed colo-
nial nesting sites somehow indicates that
neonates were altricial and that the young
were completely dependent on adult care.
However, this evidence is equivocal: par-
ents and juvenile crocodilians, as well as
some precocial birds [for example, many
shorebirds (Charadriiformes)], often remain
in or near colonial nesting sites for some
time after hatching (9, 10).

Similarly, the discovery of eggs in close
association with an adult Ouwiraptor has
been interpreted as evidence of birdlike
parental behavior, including perhaps en-
dothermy and incubation of eggs by adults

714

(11). However, nest-attending and brood-
ing behavior is widely distributed among
extant crocodilians, lizards, snakes, and
amphibians (12—15). For example, female
crocodiles (Crocodilus niloticus) often rest
their lower throat or thorax directly on
the nest for the duration of the 90-day
incubation period (16). Speculation re-
garding parental incubation of eggs and en-
dothermy based on the apparent brooding
behavior of Quiraptor are, at best, tenuous.
Current evidence suggests that the nesting
behavior of dinosaurs was likely similar to
that of modern crocodilians.
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Concentrations of Tropospheric Ozone from
1979 to 1992 over Tropical Pacific South
America from TOMS Data

Yibo Jiang and Yuk L. Yung*

An estimate of tropospheric ozone concentrations was obtained from the difference in the
Total Ozone Mapping Spectrometer (TOMS) data between the high Andes and the Pacific
Ocean. From 1979 to 1992 the tropospheric ozone concentration apparently increased
by 1.48 + 0.40 percent per year or 0.21 = 0.06 Dobson unit per year over South America
and the surrounding oceans. An increase in biomass burning in the Southern Hemisphere
can account for this trend in tropospheric ozone concentrations.

Tropospheric O, plays a key role in reg-
ulating the chemical composition and cli-
mate of the troposphere (1). The photol-
ysis of O3 forms O('D), which reacts with
H,O to form reactive HO, radicals in the
troposphere. These radicals in turn under-
go a series of chemical reactions that are
important for the lifetimes of a large num-
ber of gases (for example, CH,, CO, and
CH,X, where X is a halogen or nitrile).
Moreover, Oy is associated with air pollu-
tion. Its increase in the atmosphere is of
concern because of its deleterious effects
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on vegetation and human health.

There is general agreement that tropo-
spheric O concentrations have increased
in recent decades in the temperate zones in
the Northern Hemisphere, but trends seem
to vary geographically and temporally. A
regional increase in tropospheric Oy con-
centrations was first documented by
Warmbt (2), who analyzed a 20-year record
of surface O; measurements at stations in
Germany between the mid-1950s and
1970s. Analyses of the vertical dependence
of the O, concentrations were then at-
tempted, based on the record of ozonesonde
readings (3-6). These studies typically
showed an increase in O, concentrations of
about 1% per year in the lower troposphere.





