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Galileo Gravity Results and the Internal
Structure of lo

J. D. Anderson, W. L. Sjogren, G. Schubert

Doppler data generated with the Galileo spacecraft’s radio carrier wave were used to
measure |0’s external gravitational field. The resulting triaxial field is consistent with the
assumption that lo is in tidal and rotational equilibrium. The inescapable conclusion is that
it has a large metallic core. If the core is a eutectic mixture of iron and iron sulfide, it
comprises 20.2 + 7.4 percent of the satellite’s total mass with a radius that is about 52
percent of lo’s mean radius of 1821.3 kilometers; if the core is pure iron, it comprises 10.5
+ 3.7 percent of the total mass with a radius of about 36 percent of the mean radius.

Jupiter is the largest planet in the solar
system, almost 318 times more massive than
Earth. Its gravitational field dominates the
forces on its four largest satellites, discov-
ered by Galileo in 1610. lo, its innermost
Galilean satellite, is in orbital resonance
with two other Galilean moons, Ganymede
and Europa, and as a consequence, the tides
raised on o by Jupiter frictionally heat the
satellite and produce an enhanced surface
heat flow and active volcanic plumes (1). lo
is covered by flows of sulfur, sulfur com-
pounds, and silicates. Its mean density of
3529 kg m™> and rugged topography suggest
an interior composed of silicates, similar to
the interiors of the Earth and its moon, as
well as heavier metals.

lIo is roughly the same size as Earth’s
moon (mean radius of 1821.3 km, compared
with a lunar radius of 1738 km); however,
its proximity to Jupiter and its rapid rota-
tion (period of 1.769 days, compared with
the lunar rotation of 27.3217 days) distin-
guishes it from our moon. Most significant-
ly, the rotational and tidal forces on lo are
220 times larger than similar forces on
Earth’s moon. Consequently, although it is
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G. Schubert, Department of Earth and Space Sciences,
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incorrect to assume that Earth’s moon can
be approximated by a fluid body in hydro-
static equilibrium, it is a good first-order
approximation for lo. Deviations from equi-
librium, which are responsible for frictional
heating, are of higher order and are not
directly detectable from flyby data.

All this was known before the Galileo
mission from a combination of ground-
based observations and data from the Pio-
neer and Voyager missions to Jupiter. How-
ever, no other spacecraft had flown as close
to lo as did the Galileo spacecraft on 7
December 1995 (2). By analyzing radio
Doppler data generated during the flyby, we
measured the tidal component of lo’s grav-
itational field (Fig. 1), and by interpreting
this measurement under the assumption of
rotational and tidal equilibrium, we mod-
eled the interior structure of the satellite.
These results are relevant to studies of solar
system formation and comparative plan-
etology, including that of Earth. The inte-
rior properties that we determined can be
combined with previously known surface
properties to gain a better understanding of
how lo evolved and how it reached its
present state. For example, the surface ob-
servations tell us that sulfur is present in
abundance, and volcanic activity tells us
that it is abundant in the interior as well.
The Galileo discovery that lo has a large
metallic core suggests that iron and, because
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of the abundance of sulfur, iron sulfide have
separated from the lighter silicates to pro-
duce a differentiated satellite. lo must have
been heated sufficiently during its evolu-
tion for differentiation to have occurred.

lo and Earth are the only bodies in the
solar system for which a metallic core has
been detected directly, by means of seismic
waves for Earth and measurements of the
gravitational field for lo. Given their relative
locations in the solar system, this remarkable
similarity must be accounted for in theories
of solar system origin and evolution.

The Galileo spacecraft’s telecommuni-
cation system was limited by the loss of a
high-gain antenna that failed to unfurl be-
fore arrival at Jupiter (3). During the lo
flyby, radio signals in the S band (2.3 GHz
or 13-cm wavelength) were transmitted to
Earth by a low-gain antenna with a temper-
ature-controlled crystal oscillator (USO)
(3) for frequency reference. The Deep
Space Network (DSN) compensated for the
low signal-to-noise ratio by tracking the
spacecraft with their 70-m antennas in Cal-
ifornia, Australia, and Spain. They gener-
ated radio Doppler data from the carrier

Doppler shift (mm s™)
A
o

-100}
-120

20-15-10 5 0 5 10 15 20
Minutes from closest approach to lo
Fig. 1. Plot of the C,, lo gravity signal (solid line)
detected in the USO Doppler data near the clos-
est approach to lo. Doppler frequency shift is plot-
ted according to the formula cAv/v, where Av is
the Doppler frequency shift in hertz, v is the
spacecraft’s S-band transmitter frequency, and
the speed of light ¢ = 2.998 X 10" mms~'. The
dashed lines represent the £2 mm s~ standard
error of the data.
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wave in a format of discretely sampled cy-
cles referenced to hydrogen masers (4).

The USO was inherently less stable than
atomic frequency standards, so the DSN
sometimes generated phase-coherent Dopp-
ler data, using the spacecraft’s transponder
and the DSN’s three 70-m stations. To
assure reliable telemetry during the Io flyby,
the Galileo Project did not authorize col-
lection of coherent data. The limited co-
herent data that were generated, although
produced at times when the spacecraft was
too far from lo to reveal a gravity signal, did
provide a stable baseline for the USO data.
Because the DSN was tracking the space-
craft during the Io flyby, we were able to use
the USO data to determine the gravity
field.

The data used in our analysis started with
coherent Doppler data on 4 December 1995
at 01:52:13 [all times are Universal Time
Coordinated (UTC) at Earth reception of
the Galileo signal] and ended with USO
data on 7 December 1995 at 20:59:30, about
2 hours before the start of data relayed from
the Galileo atmospheric probe (2). The
Doppler starting time was early enough to
assure a good orbit determination during the
Io flyby (closest approach at 18:38:00). Two
criteria determined the ending time. First,
the data ended before a propulsion burn at
about 01:19 on 8 December that inserted
the spacecraft into the desired Jupiter orbit.
Inclusion of data during the propulsion ma-
neuver would have introduced troublesome
nongravitational forces. Second, although
the USO was relatively immune to environ-
mental effects, it did experience a significant
shift in frequency as the radiation dose from
Jupiter’s magnetospheric particles increased.
Any USO data taken after the selected end-
ing time would have seriously biased the
orbit determination and consequently the
gravity results.

The reduced data for the experiment
were Doppler frequency data. Frequency
data were defined as the difference in cycle
count at two times divided by the time
interval. Most of the reduced frequency
data were sampled in 60-s intervals, but
near the closest approach to Io, for an in-
terval of about 2 hours, the USO data were
sampled in 10-s intervals. This sampling
strategy suppressed the high-frequency Fou-
rier noise components (low-pass filter) and,
in addition, assured adequate resolution of
the gravity signal during the flyby.

We used the Orbit Determination Pro-
gram (ODP) of the Jet Propulsion Labora-
tory (JPL) to fit the radio Doppler data by
nonlinear weighted least squares (5) (Fig.
2). A total of 23 parameters were adjusted
to find the local minimum of the weighted
residuals. The parameters consisted of the
six Cartesian position and velocity coordi-
nates of the spacecraft; six similar Cartesian
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Table 1. Gravity results from Galileo on 7 December 1995 and from the Pioneer and Voyager missions.

Parameter Galileo Pioneer and Voyager
Cy, (I0) (559 + 27) x 107 None
GM (km?3 s™2)
System 126,712,752  * 40 126,712,767 = 100
Jupiter 126,686,527  + 40 126,686,537 = 100
lo 5959.91 = 0.28 5961 = 10
Europa 3196.81 = 0.69 3200 = 10
Ganymede None 9887 + 3
Callisto None 7181 £ 3
J, (Jupiter) None (14736 = 1) X 10-6
J, Wupiter) None (—587 £ 5)x 10~©
Jg (Jupiter) None (31 =20) x 1076

coordinates for lo’s ephemeris (orbit); three
mass values (gravitational constant G times
mass M) for the Jupiter system, lo, and
Europa, respectively; the lo gravitational
coefficients J, and C,, (6); and six polyno-
mial coefficients that fit the drift in the
USO by two quadratic polynomials (space-
craft time was an independent variable).
The spacecraft and lo orbits were numeri-
cally integrated at each iteration in the
nonlinear process. All other dynamical and
geodetic parameters were fixed at currently
accepted values (7).

The coefficient ], could not be deter-
mined independently of lo’s GM and C,,,
so we imposed the hydrostatic constraint
that J, is exactly 19 of C,,. The adjustment
of Europa’s mass was included when we saw
a clear signal in the USO Doppler residuals
near the spacecraft’s closest approach to
Europa. The removal of this signal required
a reduction in Europa’s mass of 0.19%, as
determined by the Pioneer and Voyager fly-
bys, consistent with the previous error of
0.38% (8). Not all components of lo’s
ephemeris could be determined from a single
flyby, so we introduced prior information (9)
in the form of a covariance matrix deter-
mined from ground-based observations (10).
The Galileo radio Doppler data increased
Io’s orbital radius by 9.6 * 4.2 km, and the
adjustment to orbital velocity of —396 *
130 mm s™! left Io’s total orbital energy and
orbital angular momentum unaffected.

The two quadratic polynomials for the
USO drift were assumed to be indepen-
dent. The first started at the ODP epoch
of 4 December 01:52:02 and ended 16
min after closest approach to lo. This
polynomial revealed a decrease in the
USO frequency of 46 mHz over the 89-
hour interval. At Galileo’s transmitted
frequency of 2.3 GHgz, this decrease
amounted to a change in fractional fre-
quency Avfv of 1.6 X 107!}, well within
the limits of plausibility for an inherent ran-
dom walk in the crystal’s frequency (3). The
ODP is fully relativistic, so the gravitational
redshift was accounted for. The second poly-
nomial started where the first one stopped
and continued for about 2 hours until the
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Fig. 2. Estimate of power spectral density for
combined coherent and noncoherent USO Dopp-
ler frequency (f) residuals. The dashed line repre-
sents solar plasma noise (Fourier frequency de-
pendence f~23) (12). All significant systematic
trends have been removed by the 23-parameter
fit. The variance on the residuals, equal to the
integral of the spectrum over the entire bandwidth
of the data, is 6.455 mm? s~2, and the corre-
sponding standard error is 2.54 mm s~'. In a
narrower high-frequency band starting at the low-
er limit for the lo gravity signal at about 2.78 X
10~4 Hz and extending to the high-frequency cut-
off, the standard error is 2.17 mm s~".
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last Doppler measurement in the fit. We
extended the fit this far because the frequen-
cy drift was sufficiently linear. The USO
frequency increased by 660 mHz (Av/v = 2.9
X 10719) over the last 2 hours, as a result of
the radiation dose to the crystal.

The Io flyby [at 15.0 km s™!, an altitude
of 897 km, and nearly in lo’s equatorial
plane (closest approach at latitude —8.5°
and west longitude 101.1°)] and the Europa
flyby (at a distance of 32,958 km at
14:00:54) yielded improvements on previ-
ous estimates of a determination of lo’s C,,
and both satellites’ value of GM. The GM
for the Jupiter system and for Jupiter alone
[obtained by subtracting the four Galilean
satellite masses from the system mass (8)]
were also improved (Table 1). Masses de-
rived from the GM determinations depend
on G, for which the currently accepted
value is (6.67259 + 0.00085) X 10720 km3
572 kg™! (11). This value yields a mass of



Table 2. Two-layer lo models. Three values of C,, are the inferred value from the Doppler data and its
+1¢ variations; p, = 5150 and 8090 kg m~2 for Fe-FeS and Fe core models, respectively (75).

Axis dimensions Fe-FeS core Fe core
Co C/MR?
(@a—rc)c (b —c)c r/R my/M rd/R mJ/M
532 x 106 0.371 7.681 X 1073 1.920 X 10-3 0.576 0279 0397 0.143
559 x 106 0.378 7.897 x 1078 1.974 X 1073 0.517 0.202 0.357 0.105
586 x 10-6 0.386 8.113 X 1073 2.028 X 1078 0.447 0.130 0.310 0.068
A where the ellipsoidal satellite’s principal
0.60 T , — moments of inertia are A, B, and C (C > B
P TN O Gp=0.000532 > A); the satellite’s total mass is M, and its
3 055 —8 - C,,=0.000559 . . .
3 o o C-0.000586 mean radius is R. For a body in rotational
o 0.50¢ NI E and tidal equilibrium, C,, is related to the
@ 045 o ] rotational response parameter g, by
E: o E
€ 040 - o c 3 )
0 S e - =«
3 oas) > L 2=
0301 i N i 5 where a is a dimensionless response coeffi-
’ 6 18 20 22 4 Cient that depends on the distribution of
0.30 B : : , : mass within the satellite (a« = V2 for con-
. o Cpm0.0005%2 stant density), and g, is the ratio of centrif-
S 025 - gzz:ggggﬁiz ] ugal to gravitational acceleration at the
g (20 equator (q. = 1.7123 X 1072 for lo). Given
+« 0. B . T :
2 C,, and ¢,, we can determine « from Eq. 2,
S 0.15) e B U and the satellite’s axial moment of inertia C
£ o o—
o ~.l Il S | j follows from
8 0.10} T~ A 2
T, C 2 | 2(4~3a> 3)
0.05 1 i i [T —_— = — —_ e —_
a4 16 18 20 22 24 MR® 3 501 + 3a
Core density/lo density

Fig. 3. (A) Ratio of core radius to lo radius (r//R)
and (B) the core mass fraction (m_ /M) versus the
ratio of core density to mean density (p./p), with
C,, as a parameter. The ratio p_/p is assumed to
vary between 1.46 and 2.29 (715).

(8.9319 = 0.0012) X 10?? kg for lo,
(4.7910 = 0.0012) X 10% kg for Europa,
and (1.89861 = 0.00024) X 10%7 kg for
Jupiter (12). The ratio of the mass of the
sun to the mass of the entire Jupiter system
is used in the development of planetary
ephemerides (7); its improved value is
1047.34873 = 0.00033. Improved mean
densities for lo and Europa are 3529.4 + 1.3
and 2984 + 46 kg m™>, respectively.

A synchronously rotating satellite in tid-
al and rotational equilibrium forms a tri-
axial ellipsoid with dimensions a, b, and ¢
(a > b > ¢). The long axis is along the
planet-satellite line, and the short axis is
parallel to the rotation axis. The distortion
of the satellite depends on the magnitude of
the rotational and tidal forcing and the
distribution of its mass with radius. The
distortion of the satellite and its internal
mass distribution. determine the satellite’s
gravitational field (13). The gravitational
coefficient C,, is related to the difference
in the equatorial moments of inertia by

B—-A

Cu = JiR?

(1)

From Egs. 2 and 3, a = 0.435 and C/MR? =
0.378 for the nominal value of C,, = 559 X
107¢ determined from the Galileo Doppler
data.

The axial moment of inertia provides a
direct constraint on the internal mass dis-
tribution. Consistent with C,,, we assume a
simple two-layer model for lo consisting of a
core of radius r, and density p_ surrounded
by a mantle of density p,.. The known mean
density p for the two-layer model is

r\?
‘—)' = (E) (pC - pm) + plﬂ (4)

and the axial moment of inertia can be
determined from

C  2fp, P [T\’ ‘
s =3 (5G] @

Even for the simple two-layer model, the
two fundamental physical parameters p_
and r_ are not determined uniquely: there
are two equations (Eqs. 4 and 5) and three
unknown parameters (p., 7, and p,).
Therefore, we parameterize the interior
models with p_/p as an independent vari-
able and r_/R and p,/p as the two depen-
dent variables. For an assumed value of
p/p, Eq. 4 yields p./p in terms of 7 /R;
then, Eq. 5 yields the ratio r_/R. The core
mass fraction follows from

me [\’ pe
M (ﬁ) (a) ©
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Basically, the total mass and inferred mo-
ment of inertia from the Doppler data anal-
ysis, plus the known mean radius, determine
the mass and radius of the core as a function
of p_/p (Table 2).

Uncertainty in the actual value of p_/p
results in a range of possible values for core
size and mass (Fig. 3). The theory for the
equilibrium distortion of lo allows determi-
nation of the ellipsoidal shape of these
models (Table 2). These values are inde-
pendent of the choice of p /p and compare
well with the determination of 10’s shape
from Voyager 1 imaging data (14).

Although lack of knowledge of the
chemical composition of lo’s core precludes
us from deriving the exact size and mass, the
conclusion that lo has a large metallic core
is robust. The gravitational signal of the
core was unambiguously detected during
the Galileo flyby of lo. In comparison, there
is yet no certain observational detection of
a lunar core, which is at most about 20% of
the radius of Earth’s moon.
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Juvenile Skeletal Structure and the
Reproductive Habits of Dinosaurs

Nicholas R. Geist and Terry D. Jones

Skeletal ontogeny in extant archosaurians (crocodilians and birds) indicates that the
morphology of the perinatal pelvic girdle is an indicator of overall developmental maturity
[that is, altriciality (nestbound) versus precociality (mobile and relatively independent)].
Comparison of the skeletal anatomy of perinatal extant archosaurians and perinatal
dinosaurs suggests that known dinosaur hatchlings were precocial. These data are con-
sistent with the overall similarity in nesting behavior of dinosaurs and modern crocodilians.

Fossils of juvenile dinosaurs can provide
key information regarding dinosaur life his-
tory and physiology. To evaluate whether
hatchling dinosaurs were altricial or preco-
cial, we examined the skeletal structure in a
variety of extant, perinatal precocial birds
[emu (Dromaius), Mallee-Fowl (Leipoa), os-
trich (Struthio), brush turkey (Talegalla)],
perinatal altricial birds [macaw (Ara), cock-
atoo (Cacatua), eagle (Haliaeetus), starling
(Stwrnus)], and perinatal crocodilians (Alli-
gator, Caiman) (all crocodilians are preco-
cial at birth) and compared their character-
istics with the skeletal features of perinatal
dinosaurs (1).

This comparison reveals that the extent
of ossification of the pelves at hatching may
be a reliable indicator of the altricial or
precocial nature of archosaurian neonates.
Specifically, the pelves of late-fetal croc-
odilians and precocial birds are more ossi-
fied than those of altricial birds (Fig. 1 and
Table 1) (2). This observation is consistent
with the structure of the major locomotor
muscles of the hindlimb, many of which
originate from the pelvic girdle in both
crocodilians and birds. Juveniles that are
active cursors immediately upon hatching
require a rigid, stable site of origin for limb
musculature. In contrast, pelves of perinatal
altricial birds are poorly ossified. However,
even altricial juveniles become active with-
in the nest in a matter of days after hatch-
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ing, and postnatal ossification of the pelvic
girdle is relatively rapid. Nearly complete
ossification may take place within the first
week. Consequently, if a fossilized embryo
with well-ossified pelvic elements can be
reliably identified, this criterion for distin-
guishing altricial from precocial neonates
may be applied with some assurance. Sig-
nificantly, the pelvic girdles of embryonic
Maiasaura and Orodromeus (1), as well as all
other known dinosaur embryos, including
Hypacrosaurus (Ornithischia) (3), Owviraptor
(Theropoda) (4), and Therizinosaurus (Seg-
nosauria) (5), were apparently well ossified.
These observations indicate that precocial-
ity was possibly widespread in dinosaurs.

Earlier hypotheses regarding altriciality
in certain ornithischian dinosaurs were
based on long bone epiphyseal ossification
(I, 6). Long bone elongation in all extant
fetal archosaurians (birds and crocodilians)
is centered in a massive cartilaginous cone
at each end of the shaft. The cartilaginous
cone consists of a cap of articular cartilage
that overlies a distinct growth zone of pro-
liferating chondrocytes (cartilage-produc-
ing cells). These chondrocytes, in turn, rest
above a large, temporary mass of hyaline
cartilage.

At the perinatal stage in all extant ar-
chosaurians, whether altricial or precocial,
the growth zone differentiates into distinct
regions of proliferating and hypertrophying
chondrocytes. The chondrocytes them-
selves are superficial to a region of calcified
cartilage that is interspersed with spongy





