
tinued to iieca7- very slowly (ci)mpare ~iliddle 
panels of Fig. 3 ,  .A and C).  This large alis- 
match l>et\veen oxygen consrunption and sup- 
ply yrohald\- underscores the ~myortance of 
adeq~late ox\-gen s ~ ~ p ~ l y :  \\'atering the entire 
garden tor tlie sake of one thirsty floxver (21 ). 
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Ocular Dominance Plasticity Under Metabotaopic 
Glutamate ~ e c e p G r  Blockade 

Takao K. Hensch and Michael P. Stryker* 

Occlud~ng v l s l o n  through one eye dur~ng a cr~t~ca l  per~od I n  early l ~ f e  nearly abol~shes 
responses to that eye I n  v~sual cortex. Th~s  phenomenon IS m~m~cked by long-term 
depress~on of synapt~c transm~ss~on I n  v~tro, wh~ch may r e q u l r e  metabotrop~c glutamate 
receptors ( m G l u R s )  and IS age-dependent Peaks I n  mGluR expression and glutamate- 
st~mulated phospho~nos~t~de turnover dur~ng v~sual cort~cal development have been pro- 
posed as b~ochem~cal bases for the cr~ t~ca l  per~od. Pharmacolog~cal blockade o f  mGluRs 
spec~f~cally prevented synapse weaken~ng In  mouse v~sual c o r t ~ c a l  slhces but d ~ d  not alter 
k~tten ocular dom~nance plast~c~ty I n  v ~ v o  Thus, a he~ghtened mGluR response does not 
account for the cr~t~cal  per~od I n  development 

Colnliections in the ileveloying vertehrate 
visual si-stem are scnlptecl by an  actil-ity-ile- 
pende~i t  competition betlveen inputs thr iom- 
mot1 p o s t s ~ a p t i c  neurons. ;\Ianiyulations of 
visual experience, u c l i  as I ~ ~ L ~ I I O C L I ~ ~ I ~  deyrlva- 
tion (XILJ) during a 13-ell-detined crltical peri- 
od, regulate cortical physiolog7- mi l  ultimately 
lead to anatonllcal rearrangenlents (1) .  The 
bioche~liical basls thr experience-dependent 
chanees in visucil CLI-cuitry remains largely LIII- 

known. mGluRs are reported to play a role in 
the neural plasticitr o t  several svstems, ~nclucl- 
ing sy11apse strengthen~ng in the liippocamyus 
(2-4) and long-term depression (LTD), a 
torm of age-dependent (5) synapse m.eakening 
In the h~ppocamyus (6), neocortex (2,  and 
cerebellum (8). Expression ot  mGlrtRs (9)  anL1 
glrttamate-st~mulated pliosplioinos~tide (PI) 
turno17er ( I  2) liave both heen slio\vn to peak 

transiently during development of car primary 
i-isual cortex, cc-incurrent w t h  the height of 
sensitivity to v!sual deprivation. Thus, LnGlrtR 
function is a candidate mediator i ~ f  cortical 
plasticity, accounting for l?otli the time course 
o t  rlie critical period a~i i l  the loss o t  respon- 
slveness from an eye deprived of vision. R!e 
have no\\' esamineil developmental plaaticlty 
o t  p r ~ ~ n ~ u - y  visual cortex both in vitro and in 
vivo 1~1th the mGluR antagon~st a -~~~e t l iy l -4 -  
carboxyplienylglycine (MCPG).  

T h e  meclian~sms respons~hle for the for- 
i ~ ~ a t i o n  o t  ocrtlar i lo~lii~iance c o l ~ ~ m n s  iiurlng 
~ i o r ~ i i a l  development are thought to underlie 
tlie etkcts o t  MD ( I  ) .  .4t the peak ot  the 
critical per~oil  in the cat (4  weeks after 
birth), sig~iificant segregation o t  the a tkrent  
axons serving the two eyes has already taken 
pl,~ce ( I  1 ). Thus, we eramineil ilepotentia- 
tion ot  experimentally potentiated responses, 
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Ion@-term p o ~ e n t ~ a t i o n  (LTP) ,  and lo\\.-fie- 
cluency stimulation (1  Hz), to elicit iieprea- 
sion ot trammission fl-om lllyer I\. to II/III In 
vlsual cortes 111 \ . n o ,  have h e m  JI-ocate i l  
as p h y s i ~ l o ~ ~ c a l l ~ -  relevant nioiielk for under- 
staniiiiiy n a t ~ ~ r ~ ~ l l y  occnrrlnr' s \ -nape moL1iti- 
cations ( I  2 ) .  \.isnal experielice similarl\- reg- 
nlate> frlllctioiial elopment ot 1.isua1 cor- 
tex across mammalian speciei ( 1  . 13),  anil 
sllces o t  mouse \ r ia~~al  cortex also cshibited a 
TBS-~n~dr~ced  LTP that could be depotentl- 
ated 1.y 1-Hr s t i l~~r~lar io i i  (Fiil. 1 C )  ( 14). 

Specit'lc blockaile of rnGlr~R activatiiin 
and ilepotentiation by LICPG n-as iontlrmed 
111 i l e ~ - e l n ~ i i n ~  rnixise V L S L I ~ I ~  c ~ r t e x  111 vitri). 
.L\cti\.ation of poit>!-11aptic PI-llnhed rnG1uRs 
by the specitlc aginist 1S.3R-1-amir~oc!-clo- 
L~e r~ ta~~e-1 ,3 - J i ca r~ i~sy11~ te  (t-;ICPLl\ JeLic>- 
1' ~ r i - c >  ' -  ,- ~ie~l~-i>lis 131- C ~ I J > L I I ~  ~ora;siurn ch,l~~iicl>. 

such a< tlie ca l c i~~m-ac t~va te~ l  attt.r-liy1>er- 
p,~liui:inx ~'otassiurn c ~ ~ r r c n t  ( 1  +,,\ (1 5). 
XICPG 12re~-c~-irrd tlir t-.-ICPL> fffect on I+p, 
111 \-isu,ll cortical 12vra~~~iiial cells (Fip. l A 4 \  
( 1  6). Aatli ,~ppl~c,lrio~-i at 1za.r 1C mln l?ztore 
dl-id t h r ~ ~ ~ ~ g l i n ~ ~ r  1-Hc ~ r i m ~ ~ l , ~ t i o ~ i  also rever\- 
~l>l\- p re~ .c~ i t e~ l  ~ l c p o t z ~ i t ~ d t i o ~ ~  in \.itri> (FIG. 1. 
B anid C ) .  Ii~stcacl. d ro13~1it aiicl p e r s ~ > t z ~ ~ t  
pfitentidr~on Ira, unma~ked. ui-il~l<c rlie iic130- 
tenriatliln l3roduceil 111 co~irrol >olution\. In 
co~~r ras t .  TBS-~niluce~l LTP \ r -aq iiot ,~fi'ecteil 
hi- 11CPG :n \.isual cortical ,,lices (Fig. 1 C \ .  
P o r e ~ ~ r i d t i o ~ ~  under mGluR I>li>ckade after a 
stirn~~lu: that \ Y L ) L I ~ ~  ii~>rmall\- iiiiiuce LTLI lid.; 
a l i ~ ~  1-eel1 ol-<er~.cd in tllz h i r p n c ; ~ ~ ~ i p ~ ~ \  (6) 
al-iil c z r z l ~ e l l ~ ~ ~ i i  (8). 

H;ivl~-ig ~Iemo~~strdteil  ail c>seiitial role for 
mGluR5 in sy~iaptic n-cakei-iinq 111 T itro, 1r.c 
esamlned whctlier rnCluR activati~>n n-as 
neces;-arl- tor the lix\ i ~ i '  hnct i ,~~- ia l  inputs in 
vlvc, rcsult~l-ig tri1ili LID. Srerzorasically im- 
p l , ~ ~ i t c J  c,~i-iiiulaz del~vzre(i ~e111cIe or hlCPG 
s i>lut~c>~~r  from i>;-mc~t~c mi~iipumps ti> kittell 
srriart. cortes for 1 week, i i icl~~dino 5 of 
h lD  at the pcdk i>f the criticdl period (1 7). 
X'lie~i cstraccll~rlar L I I I L ~  rcciortlliigi nere 
maile in area 17 at the end ot  the \r.eek l~linil 
to the m i n i p ~ ~ m p  col-itznt>, thz ocular crl~~mi- 
iiaiice of ner~ron~l l  respo11\tl 15-as strongly 
;hitrzii 111 tams of t112 i>11211 eye (FLU. ?A). The  
11125 of C(zllrivzij-zye respi)llizs n.a inillstin- 
guijhable acrosq I-izmisliliercs tredtcil ~5-1th ve- 
hlclc or with ~nactil-e iir act1r.c hICPG solu- 
tii>~is (Table 1).  

To col-ifirrn the ettlcacy ot ~ i ru -  u trerltniziit 
111 v~vi) .  \ye lonere,I ii~nroyhe)rzrlc clcctrotlcj 
iiiti> rzyli>nj c ) f  cortzs a.here oculdr iiomi- 
liance llaii p r c v ~ o ~ ~ < l y  l>ee~i  rnaplieil a~ i i l  
<lio\v~i to llave sl~iftcil (1 8). Co~itrc>l vi\ucll 
rzsp~nses  \Yere vigc~ro~is 2ve11 \\-itlii~i 52 JJ.III 

of thz alkaline vehicle jourcz, a11iI cell. n.ere 
activated by jirnilar i i i~-ito~~horeric currents 
tar l-or11 tlie ioniorroplc g l ~ ~ t a ~ i l a r e  receptiir 
agol-ii<r kai~iic aciii al-iil the ~iiGluR-<pec~r'ic 
agol-i~st ~ F ~ - I C P D  (Fig. 1C, lett). In contrast, 
1-izuro1-i;- 111 rlie LICPG-treated lizml<l>hzrc:: 
\Yere rarely depo1ari:cil to splkc tlirc~l-iolJ 

Fig. 1. S;.n2pt1c depaten- 
tatloti n prlt-al? \.!istla c3r- 
tex 1ne31ated e!: 1i'et%c3- 
tropc glutamate receptors. 
,A1 Act~,~atlc~n of postsyn- 
aptc ~nGIclRs 0;. the spe- 
clflc ag3n1st t-ACPC ;20 
phi) b l 3c~ed  tlie ,',,, t ~ o -  
tassut- current I,' . vclich IS 

1-.3rt-all;. 3pelied cy calcl- 
1-lm nflax tnr3agP voltase- 
gated cacum chant-es I -  

resnanse to niel:loal-e 
depolarlzati3n. Bath appli- 
cat31- 3f MCPG 1500 pi\~I' 
had n3 e'iecr on i-,, tselr. 
cut pre,vented ac31t31- of 
tlie potassam ctlfrent cy t- 
ACP3 1alr3v:i ,B) 'Y;r-en 
I\:ICPG Iv~as present for at 

MCPG 
I 

t-ACPD t-ACPD Wash 

El CNQX 
TBS,, D-APV 

1 Hz 
125 

....................<.... ..... 

east 10 mln before ano bL 

clLlrlng 1 -hz srltiiul?rlopi 
50 0 

-15 5 25 45 65 85 405 125 145 165 185"fO5 
fuarl. pre~,o~ls!. potenrat- Time (min)  
eo s,in?pt~c responses 
fai~ecl i o  clepoieni~ate, uclt MCPG 
ir;ere cear:y capaule of de- 

--- 
pression ancl relsorenil?- 1 Hz 

P 

ilon once t'ie drclg had 
;>:aslied out, Base:ine field a, 

potentias v;ere frst  sote en- $ 
t~aied uy :not s!-o\vnl $ 
an3 rher S,~ I~?PTIC c0171so- j \I( 
neni deter.n-eo ?t the eno ....... && .................................... 
of rl-e experment by ono- + 
trope reeelstor antagonists 
CNQX and C-AP\/s. ICI 
knsetiii,e a\verages of syti- 
?ptlc fleio potenti? slolse 0 MCPG 
measure17ents re~,e?ed Control 
tnat deootent~alion v;as 
specif~call! ~res!ented u' 

1nSvR blockacie. TES ,ar- 
b......... 

-10 -5 0 5 10 15 20 25 30 35-10 -5 0 5 10 15 20 25 30 35 
ro\vheadl ~nducecl LTP of Time (m in )  
si~nI?r *i i?gnit~rde In con- 
trol @ )  a,id 500 lpi\Ji MCSG S ' l  s o ~ . t o n s  120 lnln postKTBS == +29 ? 3"s versus +33 i- 10% 17 = 9 
?ncl 8. .espective:y: p > 0.7.  STvdent's t rests, In contr?st, suuseq~~ent 1-Hz stit-iulatlon (bar) 
oepotenteted control responses bc~r unlnasked afurt i -o persistent potentation vhen del~,erecl in the 
presence of MCPG 1-10 rr- 3"3 L,ersus +:9 = 6"3 respectivelhi. 20 min post-1 Hz: p < 0.002 
Stucle-t s t iestl. 

Table 1. ivlonocular dels:.lvai~on ei'ects In rne presence of ivlCPG MD inauced a m?rked loss of 
responsi\;eness 1'017 ine deprii.ed eye rega~dless of ,.,,!netl-ierihe hemsphere was nfused with ~,ehcIe or 
\:;itIi n?ct ,~,e o. act \ve IL~CPG s o ~ ~ t i o n  I P  1 0.3, I?/la~i~i-C~~hitne!; U rest). C B  clenotes contralateral bas 
noex. \v;-ere \v?c~es of 1 .OO 21-3 0 00 represent colnolete domin?nce by the closea or open eye. 
respect~vely 1 7  I ) .  

No. of 
CBI 

No, of 
l s o ~ ~ e r  cells eels 

CEI 

Exp 1 ,9. S 
Exp 2 2, S 
Exp 3 2. S 
Exp 4 it] 
Total actisle 

Con 1 lnact ve 
Con 2 Inacts!e 
Con 3 lnacts!e 
Toral in?cr~ve 
Toral ve'ilce 



t-ACPD, although they were strongly driven 
by visual stimulation and control-level 
kainic acid ejection currents (Fig. 2C, right). 
Grouped data demonstrated a greater than 
fivefold increase in activation threshold spe- 
cifically for t-ACPD as compared with con- 
trol units recorded in the opposite hemi- 
sphere or more distant in the same hemi- 
sphere (Fig. 2B). Consistent with acute ion- 
tophoresis results in the cerebellum, 
somatosensory cortex, and thalamus of rats 
(19), chronic MCPG infusion in vivo selec- 
tively blocked postsynaptic effects of 
mGluRs in kitten striate cortex without al- 
tering visual responsiveness. 

A reduction by about 50% in the size of 
deprived-eye geniculocortical arbors accounts 
for much of the effect of 1-week MD (20). 
However, anatomical effects of 4 days of MD 
are less pronounced (2 1 ), and varying degrees 
of plasticity in striate cortex have been ob- 
served for much shorter periods of deprivation 
(22). Rapid effects of MD, which may reflect 
an important transitional state when de- 
prived-eye afferents are anatomically present 
but functionally ineffective, also did not re- 
quire mGluR activation. Ocular dominance 
plasticity produced by 2 days of MD was sim- 
ilar in magnitude after 50 mM MCPG infu- 

sion [contralateral bias index (CBI) = 0.12, n 
= 51 cells] to control (CBI = 0.10, n = 284 
cells). 

Thus, postsynaptic mGluR blockade did 
not impede ocular dominance plasticity in 
primary visual cortex. Molecular cloning has 
revealed at least eight different subtypes of 
mGluRs coupled to GTP-binding proteins, 
which can be classified into three subgroups 
(23). Of particular relevance is the finding 
that MCPG blocks postsynaptic group 1 
(mGluR 1 and 5)-mediated inositol trisphos- 
phate formation (24, 25) and subsequent cal- 
cium release from internal stores (4,26). Both 
racemic R,S-MCPG and the stereoselective 
isomer (+)-MCPG failed to block plasticity 
in vivo (Table I), indicating that none of the 
known PI-linked mGluR splice variants sub  
serves the developmental critical period (27). 
Moreover, MCPG at the concentrations used 
in vivo is reported to be a broad-spectrum 
antagonist of mGluR subtypes, including 
postsynaptic group I1 (mGluR 2 and 3) (24) 
and presynaptic group 111 (mGluR 6,7, and 8) 
receptor coupling to the cyclic AMP signaling 
pathway (28). 

Certain forms of potentiation and depres- 
sion of synaptic transmission in vitro in hip- 
pocampus and neocortex have been proposed 

Fig. '2. Loss of deprived-eye re- A B . . 
sponses after monocular depriva- 
tion during metabotropic glutamate 
receptor blockade. (A) Ocular dom- 
inance of neuronal responses shii- BOL 

ed markedly in favor of the open eye 70- I 'i I 
in both hemispheres of each animal < so! 
infused with vehicle (open bars) or = 50! 
active MCPG (solid bars) solutions 4 0 1  (CBI=0.14versus0.11;n=108 

30: and 171 cells, respectively, in four 
kittens; P > 0.7, Student's t test) 20; 
(17). (B) Selective antagonism of 1 OL 

metabotropic glutamate receptors 
by MCPG in kitten visual cortex in Closed - Open 
vivo. Control units either in vehicle- Ocular dominance 
treated cortex (0) or in the same 

0- 
100 200 300 400 

Kainic acid (nA) 

hemisphere distant from the MCPG 
infusion site (0) had similar t-ACPD C Vehicle MCPG 
thresholds. Neurons in the pres- Before After Before After 
ence of MCPG (+) were almost nev- . . . .  
er activated by t-ACPD, despite visual 4 ++i +&i 
normally low kainic acid thresholds, 280 nA 320 nA 
even when ejecting currents Kainic acid rrr 
reached the limits of the ionto- - 
phoresis (1000 nA). (C) The iono- 140nA 180nA 900 nA 1000 nA 
tropic glutamate receptor agonist t-ACPD - 
kainic acid or the mGluR-s~ecific -- 
agonist t-ACPD were alternately 50 pV L 
iontophoresed onto cells isolated 2 s 
by visual stimulation (*) in regions of 
cortex where ocular dominance had previously been mapped (18). Activation thresholds for each drug 
were arbitrarily determined as the minimum ejecting current required to attain maximal cell firing within a 
10-s application period (note pulse offset artifacts). Kainic acid evoked brisk spikes in both vehicle- and 
MCPG-treated hemispheres with low threshold currents. Ejecting t-ACPD from a neighboring barrel at 
similar currents depolarized control units to spike threshold. Although visually driven, neurons in MCPG- 
treated cortex typically did not exhibit a response to the metabotropic agonist. The example illustrates 
rare activation of a large unit just at the offset of a 1000-nA t-ACPD pulse. Visual responsiveness of 
individual cells remained robust even after strong iontophoretic currents. 

to underlie activitydependent changes in the 
intact animal (1 2). Our results extend earlier 
findings that mGluRs specifically mediate 
LTD of naive synapses in rat visual cortex (7), 
with no role in TBS-induced LTP, and sug- 
eest that neocortical de~otentiation and LTD - 
share similar mechanisms. Our data are also in 
agreement with evidence (29) against mGluR 
involvement in hippocampal LTP induction 
(3, 4). An mGluR-mediated molecular 
"switch" of naive or depotentiated synapses to 
an mGluR-independent state has been pro- 
posed to explain the discrepant findings (30). 
Our results show that experience-dependent 
changes in visual cortical circuitry do not pass 
through such mGluR-sensitive na~ve states. 
Developmental plasticity in cortex in vivo 
may differ from hippocampal plasticity in 
vitro. 

The electrophysiological changes in 
neuronal excitability assayed here are con- 
sistent with a blockade of at least the 
postsynaptic PI-coupled mGluRs (4, 15). 
Indeed, greater than 1 mM MCPG effec- 
tively antagonizes t-ACPD-induced PI 
turnover and subsequent plasticity in the 
hippocampus in vivo (3). Nevertheless, oc- 
ular dominance plasticity after MD in the 
Dresence of MCPG was normal. Thus. the 
peaks in m ~ l u ~  expression (9) and recep- 
tor-mediated PI turnover (1 0) at the heieht 
of the critical period do 'no; underlie ;he 
activity-dependent refinement of connec- 
tions in primary visual cortex. 
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moving helix-distorting lesions from cellu
lar genomes. The general strategy appears to 
be similar in organisms ranging from Esch
erichia coli to humans. This process is com
plex and requires the participation of a 
number of different proteins (1). Its role in 
ameliorating the carcinogenic consequenc
es of DNA damage has been inferred from 
studies of the genetic disease xeroderma 
pigmentosum (XP). Cells from XP patients 
are hypersensitive to the killing and muta
genic effects of ultraviolet light (UV) and 

557 

Transcription-Coupled Repair Deficiency and 
Mutations in Human Mismatch Repair Genes 

Isabel Mellon,* Deepak K. Rajpal, Minoru Koi, 
C. Richard Boland, Gregory N. Champe 

Deficiencies in mismatch repair have been linked to a common cancer predisposition 
syndrome in humans, hereditary nonpolyposis colorectal cancer (HNPCC), and a subset 
of sporadic cancers. Here, several mismatch repair-deficient tumor cell lines and 
HNPCC-derived lymphoblastoid cell lines were found to be deficient in an additional DNA 
repair process termed transcription-coupled repair (TCR). The TCR defect was corrected 
in a mutant cell line whose mismatch repair deficiency had been corrected by chromo
some transfer. Thus, the connection between excision repair and mismatch repair pre
viously described in Escherichia coli extends to humans. These results imply that defi
ciencies in TCR and exposure to carcinogens present in the environment may contribute 
to the etiology of tumors associated with genetic defects in mismatch repair. 


