electrostatic interactions will decrease upon
increase of the distance between the
charged group on the ligand and the bind-
ing site of CAIL To test this hypothesis, we
compared ligands 4, 5, and 6, in which the
negatively charged carboxylate group was
separated from the sulfonamide group by
increasing numbers of bonds (Fig. 2B). The
dependence of free energy of binding on
charge, AAG,/AZ, for ligands 4, 5, and 6
was 0.10 = 0.01, 0.07 *= 0.02, and 0.02 =
0.02 kecal mol™! charge™!, respectively. As
expected, the interactions between the
charges on ligands and proteins decreased as
the number of bonds between the sulfon-
amide group and the charged group in-
creased. The value of AAG /AZ for 4 is
approximately twice that of the shorter li-
gand 1; we have not established the origin
of this difference.

Three characteristics of the combination
of ACE and charge ladders are particularly
useful for study of electrostatic contribu-
tions to the free energies of protein-ligand
interactions. First, it generates large num-
bers of directly comparable data in a
straightforward experimental system. Sec-
ond, charge ladders can be generated from a
large number of proteins, and although only
certain charge ladders behave as simply as
that from CAll, the technique has useful
generality (19). Third, the technique readi-
ly permits quantitative evaluation of both
intensive (ion composition and tempera-
ture) and extensive (ionic strength and pH)
influences on the electrostatic contribution
to biological interactions.
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Adaptive Evolution of Human Immunodeficiency
Virus-Type 1 During the Natural Course
of Infection

Steven M. Wolinsky,*{ Bette T. M. Korber,i Avidan U. Neumann,
Michael Daniels, Kevin J. Kunstman, Amy J. Whetsell,
Manohar R. Furtado, Yunzhen Cao, David D. Ho,

Jeffrey T. Safrit, Richard A. Koup

The rate of progression to disease varies considerably among individuals infected with
human immunodeficiency virus-type 1 (HIV-1). Analyses of semiannual blood samples
obtained from six infected men showed that a rapid rate of CD4 T cell loss was associated
with relative evolutionary stasis of the HIV-1 quasispecies virus population. More mod-
erate rates of CD4 T cell loss correlated with genetic evolution within three of four subjects.
Consistent with selection by the immune constraints of these subjects, amino acid
changes were apparent within the appropriate epitopes of human leukocyte antigen class
I-restricted cytotoxic T lymphocytes. Thus, the evolutionary dynamics exhibited by the
HIV-1 quasispecies virus populations under natural selection are compatible with adaptive

evolution.

In general, the natural history of HIV-1
infection in humans follows a defined pat-
tern with well-characterized features (1-3);
however, the rates of development of dis-
ease and the survival times in different in-
dividuals vary widely (4). The pathogenic
potential of the virus (5-8) and the immu-
nopathogenic effects of the immune re-
sponse (9) have each been postulated to
explain the observed differences in progres-
sion to disease. One hypothesis that might
explain the variable course is that the loss

SCIENCE e« VOL. 272 + 26 APRIL 1996

of CD4 T cells in HIV-I-infected individ-
uals is primarily due to increasing antigenic
diversity that, beyond a threshold, exceeds
the capacity of the immune response to
regulate viral population growth (10).

To evaluate this hypothesis critically, we
directly measured the levels of HIV-1 RNA
and tracked viral sequence changes that
occurred in concert with the humoral and
cellular immune response in samples from a
well-defined cohort of HIV-1-infected in-
dividuals. Six men with confirmed HIV-1
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infection from the Chicago component of
the Multicenter AIDS Cohort Studies
(MACS) were selected on the basis of dif-
ferences in their rates of CD4 T cell count
decline at ~6-month-interval study visits
(Table 1). Two subjects each had a rapid
(P1 and P2) or moderate (P3 and P4) rate
of CD4 T cell loss, and two had a relatively
stable CD4 T cell count (P5 and P6). The
depletion rate for the CD4 T cell subset
correlated with the plasma HIV-1 virion—
associated RNA burden ~9 months after
primary infection, a time when this value
generally stabilized, and with the ratio of
intracellular unspliced and multiply spliced
mRNAs (Table 1). The average HIV-1 viri-
on-associated RNA burden over the subse-
quent follow-up period also correlated with
these values (Table 1).

To explore the relation between disease
progression and genetic diversity, we tracked
the evolution of viral sequences within these
individuals by examining proviral sequences
spanning V3 through V5 amplified by the
polymerase chain reaction (PCR) from
blood samples obtained during interval visits
(8). Product DNAs from five to eight time
points per individual were cloned, and up to
13 clones from each sample were sequenced
(11), for a total of 292 sequences, each 650
nucleotides in length.

Phylogenetic analyses of these sequences
[(12); but see (13)] revealed distinct clusters
of viral sequences for each subject, indica-
tive of absence of PCR-product contamina-
tion. Greater branch lengths were observed
for subjects P3, P4, and P5 relative to those
for P1, P2, and P6. This observation held
when viral sequences were analyzed from
comparable time points relative to the time
of primary infection (14). Thus, the longer
branches for subjects P3, P4, and P5 were
due to a more rapid accumulation of muta-
tions and not to a longer survival time.

Within each subject, viral diversifica-
tion and evolution were tracked over time.
Viral sequences from P1 and P2 showed no
tendency to form clusters associated with
sampling time in the phylogenetic recon-
structions. Viral sequences from subject P3,
in contrast, showed distinctive clustering
with sampling time (Fig. 1A). Viral se-
quences from P4, P5, and P6 had some
tendency to cluster with time, with early
sequences clustering closer to the ancestral
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Fig. 1. Representative phylogenetic reconstruc-
tions within subjects. (A) The phylogenetic recon
struction showed that the viral sequence set from

CONB
P3 had the strongest evidence for sequential
shifts in the population of viruses among the six 0.05
subjects. (B) The viral sequence set from P4 was
selected to represent the phylogenetic pattern observed for P4 and P5. There was substantial intermin-

gling of viral sequences from different time points, with generally low bootstrap values representing
different clusters. The phylogenetic reconstructions shown are neighbor-joining trees with bootstrap

proportions of greater than 75 o
PHYLIP program (40) was used to ¢
matrix with a ratio of transition to

e taxa are labe

eachti oint repre
sequential time points wi
population can serve as a reservo

node at the base of the phylogenetic tree
(Fig. 1B). Therefore, progressive shifts in
the viral population may be occurring in
subjects who have a relatively slow rate of
CD4 T cell decline (15), as illustrated by P3
and to a lesser extent by P4 and P5.

To test whether the observed difference
in the evolutionary rates within subjects
was due to positive selection or to differenc-
es in replication kinetics, we compared the
accumulation rates of nonsynonymous rela-
tive to synonymous base substitutions in all
sequences by using the consensus sequence
of the first time point as a reference (16).
The accumulation rates of nonsynonymous
substitutions were faster in subjects P3, P4,
and P5 (1.5, 1.0, and 1.3% per annum,
respectively) than in P1 and P2 (0.5 and
0.3% per annum, respectively). The slower
accumulation rate of nonsynonymous sub-
stitutions for P6 (0.3% per annum) was an
exception to the trend. In contrast, the
rates of accumulation of synonymous base
substitutions were gradual and comparable
in all subjects (0.3 to 0.5% per annum),

with the exception of P2, who had fewer
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n nucleotide in a given position, was used as
enerated by means of the maximum likelihood program, in PHYLIP, dnaml. Comparab
btained for the nodes in P3 by means of parsimony and the program PAUP (712, 47)
number indicating months from the estimated time of primary infection, with
a different color. Some outliers and some interming
d, even in P3, and would be expected, given that the CD4 T cell
f unexpressed provirus.

f 100 bootstrap replicates (shown at appropriate branch points). The
nstruct the tree by means of a Kimura two-parameter distance
version of 1.3. The B clade consensus sequence

), defined as
similar trees
Dootstrap

an out group. Qualitative

ling of sequences from

changes (17). Therefore, within the limita-
tions of our data set (n = 6), the increase in
genetic diversity correlated with positive
selection for change and, contrary to pre-
diction (10), with prolonged rather than
shortened survival (18).

To determine whether an antigenic di-
versity threshold existed for each of these
six subjects (10), and to facilitate tracking
viral forms through time, we devised a
method for systematically clustering close-
ly related protein sequences that could be
regarded as predictive of immunological
reactivity (19). Because of the relatively
long length of the viral sequences analyzed
in this study, it was not possible to define
genetic forms on the basis of sequence
identity as was done previously when only
the 35 amino acids of the V3 loop were
considered (10). Therefore, to estimate
viral diversity in a sample and explore
shifts in the HIV-1 quasispecies virus pop-
ulation, we generated pairwise similarity
scores for all aligned protein sequences
and clustered the scores by using pheno-
grams that group sequences according to
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Table 1. The clinical course, CD4 T cell depletion rates, and quantitative
virological data for the six study subjects. The times of infection, estimated
as the midpoint between the last HIV-1 antibody negative and the first
antibody positive visit, were, for the six subjects, 1984 for P5; 1985 for P1,
P2, and P6; and 1986 for P3 and P4. Subjects P2, P3, and P4 received
antiretroviral therapy with zidovudine at 30 months, 48 months, and 64
months after the estimated time of infection, respectively. Subject P5 was
lost to follow-up after 48 months. P1 and P2 died within 36 and 42 months
of infection, respectively. CD4 T cell counts, expressed as numbers of cells

per microliter, were determined as described (38). The rates of linear CD4 T
cell decline were measured by the minimal slope obtained from sliding linear

" regressions starting within a year after primary infection. Plasma HIV-1 RNA
levels were measured by a quantitative RT-PCR assay (Roche Molecular
Systems) and expressed as RNA copies per milliliter. Intracellular unspliced
and multiply spliced viral mMRNAs were measured as described (8). Because
of the 3- to 6-month sampling intervals, the initial rise and subsequent fall in
the plasma viral RNA burden during primary infection was detected only for
subjects P2 and P5.

Viral RNA at 9 months after

CD4 depletion rate Viral RNA at last visit

Follow-up Average .Average. primary infection
Sub- . viral RNA in
ject time Exponential CD4/CD8 plasma
(months) Linear (cells p -9 ratio ; . . . . . .
. Ty (cells pl (copies/ml)  Plasma Unspliced Spliced Ratio Plasma Unspliced Spliced Ratio
=" month™7) 4
month~1) .
P1 32 -19.5 —-0.08 0.39 417,338 267,612 6240 1224 51 294,745 22,172 2132 104
P2 35 —-20.5 -0.05 0.21 172,141 120,885 3526 1037 3.4 300,952 22,564 2097 1141
P3 122 -4.0 -0.013 0.37 49,171 32,444 4121 2264 1.8 28,317 14,282 1359 6.8
P4 116 -3.4 —-0.003 0.39 13,367 13,413 987 1974 0.5 8,611 1,237 1359 0.9
P5 47 -0.4 —0.0004 0.53 6,120 10,283 2624 4686 0.6 1,905 16,213 3753 4.3
P6 93 -0.3 —0.0004 0.93 7,923 11,355 750 1250 0.6 3,489 3,216 1524 2.1
amino acid similarity (19), irrespective of ~ Fig. 2. Diversity of viral forms and p2
evolutionary path (20). The frequencies of ~ shifts in the HIV-1 quasispecies virus & B G
sequences representing different clusters ~ POPulations overtime. The STR ami- g 3_1800%
were then used as a basis for calculating " acid substitution matrix, based on 8 5
the amino acid substitution frequen- 112002

the entropy of that sample, where entropy ies found i tein _ struct g ! E
) ¢ variability based on the €S found in protein structure- = \ l600 §
1S a measure or variability on based alignments (42), was used for 8 o
distribution of discrete forms within a calculating the sequence similarity. & ta00 2
sample (21). Gap penalties were scored suchthat & haitn, 2

All six subjects had relatively homoge-

the initial gap caused a reduction in

neous virus populations up to 9 months the total score of 6.7, and additional, ;@‘00

after primary infection, showing either one ~ consecutive gaps reduced the score = g

or two protein forms (Fig. 2). Subjects P1 by 1.3.Onceall pairwise scoreswere g

and P2 who progressed rapidly to acquired calculated, the viral sequences were % 60.

immunodeficiency syndrome (AIDS) main- :i::‘l:(satge;ed (%I) m?ggugr:c;axlrx:g § 40

tained a Felativgly homogeneous populatign grouped accc;rding o the clustering & 20}

of protein variants throughout the entire pattem into sets containing highlyre- & |

course of infection even at the beginning of  |ated forms, with the same criteria

a precipitous decline in the CD4 T cell  used for all six subjects, and repre- 100 2000
count (Fig. 2) (15, 18, 22). In contrast, late  sented as histograms (alignments of 50 :16002
time points in P4 and P5, when the CD4 T viral sequences are available upon |

cell count was relatively stable, showed the
highest diversity among all the samples
(Fig. 2). Subject P3 consistently showed
relatively homogeneous within-sample viral
sequences, however, even in a period of
CD4 T cell decline (Figs. 1 and 2). The
progressive changes apparent in P3 (Fig. 2)
over time were also seen in the phyloge-
netic topology (Fig. 1A).

Lacking evidence for increasing antigen-
ic diversity as the driving force behind the
rate of CD4 T cell loss (10), we assessed the
role of the immune response by studying
aspects of the humoral and cell-mediated
immune surveillance mechanisms. In neu-
tralizing antibody assays performed with
both autologous and heterologous primary
viruses (7), most of the sera obtained from
these participants early after infection had
little or no neutralizing activity, whereas
late in the course of infection, the neutral-
izing antibody response tended to be more
pronounced in the sera obtained from P3,
P4, and P6 compared with sera from P1, P2,

request). The predominant viral form
found in each subject in the first time
point is indicated in turquoise. Other
forms are indicated by additional col-
ors, with no relation implied between
the subsequent colors and the forms iy
found in the different subjects. The

fraction of the total number of viral

Sampled frequency (%)
[=2]
o

9 21
Months

iy
n
o
o

(1]
(=]
o
Cells per microl

Sk
o
o

A

33 45 57 -3 9

1 33 45 57
Months

sequences that were of a given form within each sample is shown. To normalize these data and allow for
an appropriate scale on the abscissa, the entropy of each sample (76) (®) is displayed as a percentage
of the highest entropy in the study (P4 sampled at 48 months after infection; entropy = 1.68). Two
additional measures of viral variation within samples were calculated: the Simpson index (70) and the
mean and median Hamming distance for the amino acid sequences, excluding gaps. Both of these
distance measurements provided intersubject comparisons that essentially tracked with the entropy
measure shown here. CD4 counts (black line) are shown as cells per microliter.

and P5 (23). Contrary to what has been
observed in simian immunodeficiency virus
infection of macaques (24), we found no
clear association between the humoral im-
mune response and the rate of progression
to AIDS. In contrast, gag-, pol-, and env-
specific cytotoxic T lymphocytes (CTLs)
were detectable for each of these subjects
(2), with the frequency of CTL precursors
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(CTLp) inversely correlated with the rate
of progression to disease (Table 2). Two
human leukocyte antigen (HLA) class I-
restricted CTL epitopes unambiguously de-
fined within the region of gp120 that was
sequenced (25) also showed a high frequen-
cy of amino acid substitutions over time
when the subject expressed the given allele
and when there was an env-specific CTL
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response (Table 2) (26). Thus, a vigorous
HIV-1-specific HLA class I-restricted CTL
response was associated with slow rather
than rapid rates of development of disease,
contrary to the prediction that the immu-
nopathogenic effects of CTLs are responsi-
ble for depletion of CD4 T cells (9).

To assess the contribution of viral viru-
lence in mediating CD4 T cell decline in
these individuals (5, 6), we examined the

from blood samples obtained from each sub-
ject at serial time points (27). All viruses
replicated with equal efficiency in primary
cultures of normal donor peripheral blood
mononuclear cells and monocyte-derived
macrophages and did not induce syncytia in
cultures of the established MT-2—trans-
formed T cell line. Therefore, there was no
evidence of a phenotypic switch to syncy-
tium-inducing forms in the virus popula-
tions coincident with an accelerated rate of

progress to AIDS (5). Consistent with these
results, the characteristic positively charged
amino acids in the V3 loop motif associated
with a syncytium-inducing phenotype were
absent from all 292 sequences (28).

To screen for a potential difference in
the ability of these isolated viruses to repli-
cate and deplete CD4 T cells in the absence
of any immune response, we inoculated lon-
gitudinal viruses isolated from all six study

biological phenotype of viruses isolated

participants into human fetal thymus—re-

B7-restricted epitope Cw4-restricted epitope

CTLp/104PBMCs

B7-restricted epitope Cwié-restricted epitope CTLP/104PBMCs

RPNNNTRKS/ SFNCGGEFF env gag pol RANNNTRKS/ SANCGGEFF env gag pol
P1.-3 NA P1.-3 NA P48 oo 11 P48 -------—- 10 56 190 36
P19 - - ————-—- 11 PLY - - 0 01 02 07 PA8 ——m e i I P48 -------- S 1
P1.9 -——----- X- 1 12 26 25 P48 --1-----—- 1
= T Fc SR 7 P18 —mmmmme - 8 e [ P421 - 7 33 64 55
P1.13 ~————- G--- 1 pPa21 --G---R-- 1 P421 ----R---- 1
P1.16 ——— - 8 P16 —mmmmmmem 8 P45 e 9 P425 - 9
P1.22 -——————-—~ 8 P1.22 ——--m- 7 P4.37 --G---- H-- 3 P437 -—-—————- 9
P1.22 —————-- S- 1 PAZT —Alemaeee 2 P437 - L 1
P1.26 -------——- 7 P126 -—------- 7 03 03 08 P4.37 G-G---mmm- 1
PA37 —-G-1D--R-- 1
P23 -------- G- 6 P23 ------——- 6 P4.37 --G-T--R-- 1
P29 -------- G- 6 P29 —------—- 6 PA37 —-8------- i
p2.12 NA P2.12 NA 0.3 <0.1 <0.1 PA37 == m e i
P2.15 - - ———— -~ G- 7 P215 -------—- 7 . P4.48 --S---K--- 4 P448 -------—- 9 11 47 141
P2.18 - - ----— G- 5 P218 -=-----—- 5 P4.48 --S-----G- 3 P4.48 ------ K-- 3
P2.21 —————— -~ G- 7 P221 --mmmee—- 5 03 01 02 P4.48 - -8------- 2 P4.48 G-------- 1
P2.21 ~------ L- 1 Pd.48 —~——-m e 2
p2.21 C-------- 1 PA.48 —-GIT--R-= 1
pP2.27 ———————- G- 5 P227 ----——---- 7 04 05 02 P4.48 §-G--——~ GM
P2.27 ——————- GT 1 L2V —— 2 P454 - 6
pP2.27 ———-—-A--G- 1 pPa.sd --G----R-- 2
P2.31 —————--~ G- 4 P231 ———————-—- 5 P4.54 -G
P2.31 ---—--G-G- 1 P4.64 --8-----G- 1
pP2.35 ---——--- G- 2 P235 ----—- G--- 1
P2.35 —---- ———— I <0.1 <0.1 <0.1 P6.17 NA P6.17 NA 0.1 <0.1 94
PB.1Y ~mmmm - 10 PB.19 —-ommmmme 10
P3.-3 NA P3.-3 NA <0.1 <0.1 <01 P6.22 -~ - 6 P622 —------—- 6
P37 -~ 8 P37 -—-—----—-—- 8 <0.1 <0.1 <01 P6.26 NA P6.26 NA 0.12 0.1 44
P3.10 - - =—-————-- 6 P310 --——----- 6 P6.29 —-—--—---- 10 P629 ----—---- 9
P3.22 - ————————- 5 P322 ----- R--- 4 P6.29 ---R----- 1
P3.22 - -------- 1 P8.39 - v 3 P639 --—-——---—- 3
P3.25 ~--------- 4 P325 ---—---—-—- 6 P6.42 ———--—--—- 10 P6.42 ————————- 11
P3.25 ~---T----- 2 P6.42 —-FY------ 1
P3.49 —----—---- 5 P349 -———————- 5 P6.58 NA P6.58 NA <0.1 03 34
P3.55 -—-—-———--- 5 P355 --—---- S- 1 03 <01 08
P3.65 -X------- 1 P53 = 13 P53 —--—————- 12 <0.1 143 <01
P3.55 --------- 3 P53 ------ K-- 1
P5.9 ——-eemeeem 9 P59 -———-————- 10 <01 40 26.0
Table 2. A B7-restricted epitope (RPNNNTRKSI from amino acid position 303 P59 ------ K-
to 312) and a Cw4-restricted epitope (SFNCGGEFF from amino acid position P59 wo e 10 P59 ——————-o 10
380 to 388) are within the region of gp120 that was sequenced (25). The P5.23 - 7 P523 - 7
amino acid positions are numbered according to the envelope of the HXB2R P528 - 11 P5.28 —————=——= 11
sequence in the AIDS and Human Retroviruses Database (39). P1 and P2 P5.34 - e 8 P534 —--omee—— 11
expressed the Cw4 allele, had low to undetectable CTLp against the vaccinia- P5.34 —-De-eememe
expressed env protein, and had infrequent nonsynonymous substitutions P5.34 K---- - |
within this epitope. P4, P5, and P68 expressed the B7 allele. P6 lacked non- PE3A -G |
synonymous substitutions in the B7-restricted epitope and had a nondetect- P5.47 --8------~ 6 P547 ——-----—- 10 23 43 148
able env-specific CTLp. P4 and P5 had multiple amino acid substitutions P5 A7 = ]
within the B7 -restricted epitope at time points when strong env-specific CTLp P5.A7 ——Ge e e ee I

was detected. At the first time point tested, P4 and P5 carried the defined
B7-restricted epitope, RPNNNTRKSI, in 11 of 12 and 13 of 13 sequences,
respectively. By 37 months, the initial epitope sequence in P4 was almost
entirely replaced (1 of 10 remaining) by a variety of forms, many with multiple
substitutions. This diversification persisted at 48 and 54 months after infec-
tion. At 47 months after infection when P5 had vigorous env-specific CTLp, 3
of 10 sequences had the original epitope and 7 sequences had variant
epitopes. For subjects P1, P2, and P3 who did not have the B7 allele and P6
who did not have CTLp, only 6 of 162 sequences had single amino acid
substitutions within the defined epitope. No epitopes with multiple amino acid
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substitutions were observed. The anchor residues, highlighted in italics, were
essentially unchanged, suggesting that new T cell receptor rearrangements
might be able to respond to the variant epitope sequences. Because it is not
possible to predict CTL escape solely on the basis of amino acid sequence
information, studies are in progress to test the binding of variant epitope
peptides to HLA B7 and the recognition of variant peptide-HLA complexes by
CTL from these subjects and others (26). NA, not applicable; X, any amino
acid; $, stop codon. Abbreviations for the amino acid residues are as follows:
C, Cys; E, Glu; F, Phe; G, Gly; I, lle; N, Asn; P, Pro; R, Arg; S, Ser; and T, Thr.
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constituted severe combined immunodefi-
ciency mice (SCID-Hu) (29). The viruses
from all six subjects, regardless of their
course of progression to disease, replicated
and depleted CD4 T cells to an equivalent
extent in the SCID-Hu mouse model (30).
Therefore, for these six subjects, the viral
phenotype was not an overt determinant of
the rate of development of disease (5, 6).

Models that relate increasing antigenic
diversity (10), an immunopathologic effect
of CTLs (9), or dominance of a viral form
with a more cytopathic phenotype (5) to
pathogenic progression are not supported by
the results of this study. Within the limita-
tions of our sampling, increasing viral diver-
sity in itself does not correlate with CD4 T
cell loss and progression to AIDS. On the
contrary, rapid CD4 T cell decline can and
does occur when viral populations appear to
be relatively homogeneous (15, 18, 28).
Furthermore, these data suggest that a rapid
decline in the CD4 T cell count can occur
when an HIV-1-specific immune response
is deficient and a predominant viral form
with great pathogenic potential is lacking.
The presence of diverse viral forms at a
given time point may reflect the length of
time after primary infection, or shifts in the
viral population possibly related to survival
advantage during changes in the host envi-
ronment [for example, a vigorous cell-me-
diated immune response (2, 31) or a change
in cell tropism (5)]. These factors may ac-
count for previous observations in two sub-
jects that related diversity in the V3 loop of
env to progression of disease (10).

Despite the ability of the virus popula-
tions to exhibit extreme rates of evolution
under selective constraints, stable viral pop-
ulation equilibrium can be found when the
starting virus is relatively fit and replicating
in a defined, relatively constant environ-
ment (32-35). In such a milieu, a particular
genetic variant, regardless of its pathogenic
potential (32, 33), would be amplified pref-
erentially. Conversely, in a changing envi-
ronment or under selective constraints (32,
34), population disequilibrium can be found
whereby viral replication results in rapid
and continuous genetic variation (32-38).
This paradigm is supported by the phyloge-
netic analyses within subjects, which
showed a relative evolutionary stasis with
little evidence of selective pressure for
change in subjects P1 and P2, and rapid
evolution with some evidence of selective
pressure for change in subjects P3, P4, and
P5. The slow evolution exhibited by P6 may
represent the apparent predominance of
some optimally adapted form (32-38).
Compatible with this paradigm, it is con-
ceivable that the relative stability of the
HIV-1 quasispecies virus population in P6
may eventually be disrupted by new selec-
tive pressures (32). Thus, these data suggest

that HIV-1 quasispecies virus population
dynamics are compatible with an ideal Dar-
winian system (38).
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Selective Activation of NF-xB by Nerve Growth
Factor Through the Neurotrophin Receptor p75
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Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3
(NT-3) selectively bind to distinct members of the Trk family of tyrosine kinase receptors,
but all three bind with similar affinities to the neurotrophin receptor p75 (p75N"R). The
biological significance of neurotrophin binding to p75N™® in cells that also express Trk
receptors has been difficult to ascertain. In the absence of TrkA, NGF binding to p75N™?
activated the transcription factor nuclear factor kappa B (NF-«B) in rat Schwann cells. This
activation was not observed in Schwann cells isolated from mice that lacked p75NTR. The
effect was selective for NGF; NF-«B was not activated by BDNF or NT-3.

T'he best established role for neurotrophins,
which include NGF, BDNF, NT-3, NT-4/5,
and NT-6, is their ability to support the
survival and differentiation of neurons.
Three tyrosine kinase receptors, referred to
as theTrks, are critically involved in mediat-
ing these effects (1). However, the neurotro-
phins also interact with another receptor
whose function has not been clearly estab-
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lished, p75N™. The Trks exhibit high selec-
tivity for their cognate ligands (TtkA for
NGF, TrkB for BDNF and NT-4/5, and
TrkC for NT-3), whereas p75N™ binds to
all neurotrophins with similar affinity but
with different kinetics (2). The Trks produce
their effects through activation of well-de-
scribed signaling pathways, including Ras—
mitogen-activated protein kinase, phospho-
lipase C—y, and phosphoinositol-3-OH ki-
nase (3). On the other hand, the transduc-
tion mechanisms of p75N™® remain largely
unknown. Several reports suggest that
p75NTR interacts with TrkA to form a high-
affinity binding site (4) and to regulate TrkA
signaling (5). However, evidence has also
been presented that suggests that p75™ ™ has
an independent function, such as the regu-
lation of apoptosis (6) or the migration of
Schwann cells (7). The underlying transduc-
tion mechanisms have yet to be determined.
Recently, neurotrophin binding to p75N™R
was shown to activate the spingomyelinase





