
may exist that monitor histone acetylation 
or higher order chromatin structure. It 
sho~lld now be possible to study the regula- 
tion of histone deacetylase during the  cell 
cycle, its substrate specificity, and the 
mechanism by which it is targeted to spe- 
cific regions of the genome. 
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Regulation of an Early Developmental 
Checkpoint in the B Cell Pathway by igp 

Shiaoching Gong and Michel C. Nussenzweig* 

Many of the cell fate decisions in precursor B cells and more mature B cells are controlled 
by membrane immunoglobulin (Ig) M heavy chain (mk) and the Iga-lgp signal transducers. 
The role of Igp in regulating early B cell development was examined in mice that lack Igp 
(Igp-'-). These mice had a complete block in B cell development at the immature 
CD43 +B220+ stage. immunoglobulin heavy chain diversity (D,) and joining (J,) segments 
rearranged, but variable (V,) to DJ, recombination and immunoglobulin messenger RNA 
expression were compromised. These experiments define an unexpected, early require- 
ment for Igp to produce B cells that can complete VDJ, recombination. 

M e m b r a n e  i m m u ~ l o g l o b ~ ~ l i ~ ~ s  are essential 
regulatory components in both developing 
and mature B cells (1 ). Specific events that 
are controlled by m p  in developing B cells 
include the precursor B cell (pre-B cell) 
transition ( 2 ) ,  allelic exclusion ( 3 ) ,  receptor 
editing (4), and deletion of lymphocytes that 
express self-reactive iinin~~noglobulins (5). 
T h e  earliest of these events, allelic exclusion 
and the pre-B cell transition, are induced by 
m p  through the mp-associated Iga-Igp sig- 
nal-transducing proteins (6).  In more mature 
B cells, the same signal transducers mediate 
B cell activation by triggering Src and Syk 
family tyrosine kinases (7). All of these mp- 
i n d ~ ~ c e d  cellular responses are thought to be 
mechanistically related because they share a 
req~~ireruent for phosphorylation of the ty- 
rosine residues in the antigen receptor acti- 
vation motifs (ARAMs) of the Iga-Igp corn- 
plex (8). 

Howard Hughes Medcal nstrute, Rockefeller Unversty, 
New York, NY 10021. USA. 
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Less is 1cnon.n about the regulation of 
portions of the  B cell path\vay that occurs 
before Ig gene rearrangement. A receptor 
complex composed of surrogate heavy and 
light chains, possibly associated with the 
Iga-Igp signal transducers, has been pro- 
posed as a regulator of these earlier stages of 
the B cell pathway (1 ,  9) .  Support for this 
hypothesis comes from the  observation that 
Iga and Igp are expressed \\?hen Ig genes are 
still in the  germline configuration ( 2 .  10) .  

T o  determine whether the Iga-Igp corn- 
plex regulates the  early stages of B cell 
de\,elopment, we produced a targeted mu- 
tation in the  mouse Igp gene (1 1)  (Fig. 1). 
Deletion of the  promoter as well as of the  
first and part of the second coding exons of 
Igp res~llted in mice that did not  express 
Igp m R N A  (Fig. 2) .  Northern ( R N A )  blots 
rvit11 a n  Igp complementary D N A  (cDNA)  
probe failed to detect Igp R N A  extracted 
from bone marrow of IgPp'- mice, whereas 
a high-intensity signal was present in both 
wild-type and R A G - I - '  control R N A  
samples (Fig. 2) .  In  contrast to Igp, expres- 
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sion of Iga mRNA was not affected in 
IgPP1- mice (Fig. 2). As in the RAG-1 -I- 
mice, the amount of Iga expressed by the 
IgP-I- mice was less than that found in 
wild-type mice but was proportional to the 
total number of B cells in the sample (Figs. 
2 and 3). Thus. Iea continues to be ex- 
pressed despite the-absence of IgP. 

The effects of the IgP mutation on lym- 
phocyte development in vivo were exam- 
ined histologically and through the use of 
fluorescence-activated cell sorting (FACS) 
analysis. Lymph nodes from mice that 
lacked IgP did not develop germinal cen- 
ters, and spleens had smaller white pulp 
follicles (Fig. 3; in several experiments, the 
number of leukocytes in the spleens of 
IgP-/- mice was 60% of that found in 
wild-type littermate controls). Consistent 
with the lack of germinal centers, IgP-I- 
mice had no mature surface p+ peripheral B 
cells and had a specific block in B cell 
development in bone marrow (Fig. 3). 
Analysis of bone marrow cells with antibod- 
ies specific for the B220 and CD43 markers 
revealed that B cell development in IgP-/- 
mice progressed to the immature 
CD43+B220+ progenitor B cell (pro-B 
cell)/pre-BI cell stage [combined fractions 
A, B, and C in (1 2)]; however, more mature 
CD43-B220+ pre-BII cells (1 2) were com- 
pletely absent (Fig. 3). Further fraction- 
ation with antibodies to the cell surface 
antigens HSA and BP-1 showed that 
IgP-/- mice closely resembled RAG-1 mu- 
tant mice (2, 12, 13) (Fig. 3). Consistent 
with ~revious observations in RAG-1 mu- 
tant mice, there were no significant differ- 
ences in the distribution of cells in fractions 
A, B, and C despite the block in develop- 
ment (2). In contrast to the RAG mutant 
mice, the defect in IgP-/- mice was re- 
stricted to the B cell lineage, and T cell 
development was unaffected (Fig. 3). 

The observation that expression of Iga 
alone failed to induce the pre-B cell tran- 
sition in IgPP1- mice differs from the results 
of experiments with transgenic mice, in 
which the cytoplasmic domains of Iga and 
IgP were each found to be capable of induc- 
ing pre-B cell development when expressed 
as part of chimeric immunoglobulins (6). 
The difference in the two results is likely 
explained by the documented inability of 
endogenous Iga to form a homodimeric sig- 
naling complex (14). Thus, under physio- 
logical conditions, progression beyond the 
CD43+B220+ immature B cell stage ap- 
pears to require the assembly of Iga-Igp 
signaling modules. 

To  further characterize the point in the 
B cell pathway at which development is 
interrupted, we assayed for the expression 
of a series of developmentally regulated B 
cell-specific mRNAs. Targeting IgP did 
not alter the expression of A5, RAG-I, 

Fig. 1. Inactivation of B +/+.+/+ &-.+I- -I-. J- 

the Igp gene by ho- kb 
23 

mologous recombina- B -- - 9.4 
tion. (A) Diagrammatic 6.5 
representation of the --I 4.4 

2.3 Igp locus (top). the tar- 
geting construct (mid- 23 
dle), and the hybrid- ti 9.4 
ization probe and tar- " 6.5 
geted allele (bottom). 4.4 
not drawn to scale (B, 2.3 

Barn HI; H, Hind Ill;  K, Kpn I ;  E, Eco RV; neo, 
neornycin). Barn HI and Hind Ill  restriction sites 
used to detect the targeted gene are indicated. 
Homologous replacement results in the deletion of 
a 2-kb region of DNA spanning from the Eco RV 
site 1 kb upstream of the promoter to the Kpn I site 
in the middle of the second exon of Igp: Eco RV and 
Kpn I sites are indicated (1 1, 27). (B) Southem blot 
of Bam HI- and Hind Ill-digested tail DNA from 
pairs of control (+/+), heterozygous (+/-), and 
homozygous (-/-) Igp-targeted mice. 

RAG-2, Ip,  or p0 and appeared to increase 
the relative steady-state accumulation of 
unrearranged VH mRNAs (VHster). All of 
these mRNAs are induced early in the B 
cell pathway, and the amounts measured 
suggested that there was no lack of expan- 
sion of the pool of early B cell precursors 
in the IgP-/- mice (Fig. 2). In contrast, 
neither Igp nor I ~ K  mRNA could be de- 
tected in IgP-/- mice by Northern blot- 
ting (Fig. 2). This unexpected result was 
confirmed by the more sensitive, but less 
quantitative, reverse transcriptase poly- 
merase chain reaction (RT-PCR) tech- 
nique, whereby only small amounts of ma- 
ture Igp and I ~ K  mRNAs were found (Fig. 
2). We conclude that, in the absence of 
IgP, B cell development is interrupted 
sometime before cells become fully com- 
petent to produce Igp. 

Two molecular mechanisms could ac- 
count for the abnormally low amounts of 
Ig heavy and light chain mRNAs in IgP 
mutant mice. The assembly of fully rear- 
ranged Ig transcription units might be de- 
fective; alternatively, there could be a spe- 
cific alteration in the expression of Ig 
genes. We used PCR to examine Ig gene 
assembly at the level of DH to JH and VH 
to DJH joining (Fig. 4). IgP-/- mice had 
normal levels of DH to JH rearrangements, 
consistent with the expression of sterile 
pO, Ip,  RAG-I, and RAG-2 transcripts 
(1.5, 16) (Fig. 2). Moreover, D p  mRNAs, 
the products of D, to J, rearrangements, 
were easily detected by RT-PCR (Fig. 2), 

RAG 190 RAG IgR 

Fig. 2. Expression of de- RAG 
velopmentalty restricted +I+ -I- -I- 
mRNAs in Igp-'- mice. 
Northern blot and RT-PCR Po 

analysis of bone marrow IP 
RNA from 5-week-old 
Igp-'- mice, RAG- 1 -/- 

mice (RAG-'-). and wild- . I) 
tvlse 'littermate controls VCb I , . 
(+/+) (28). The RAG- 
I - / -  mice used in these 3 m  - 
experiments carry an in- ~ns3- 
sertion mutation that re- 

1p-- - 
sults in an mRNA that is 
the same size as RAG-1 
but that does not Pro- 

' 
duce protein (2). C, con- 

., trol (GAPDH). 

which suggested that fully assembled 
heavy chain D p  transcription units are 
expressed in IgP-I- pro-B cells. In con- 
trast, the levels of V, to DJH or V, to J, 
rearrangements were severely diminished 
despite a large amount of sterile VH tran- 
scription (Figs. 2 and 4). 

To measure the extent of the deficiency 
in VH to DJ, recombination in IgP-I- mice 
directly, we examined deletion of the 5' end 
of the D, region in purified CD43+B220+ 
pro-B/pre-BI cells by Southern (DNA) 
blotting. For this purpose we used a previ- 
ously characterized probe from the 5' end of 
D, that hybridizes with DNA segments 
that are normally deleted upon VH to DJ, 
recombination (17). An Igp-CH4 (fourth 
constant region) probe was included in the 
hybridization reactions to verify that the 
amount of DNA was equivalent in each 
sample. Controls were sorted CD43+B220+ 
B cells [fractions A, B, and C in (1 2)] from 
RAG-1 mutant mice, which do not undergo 
recombination (13) [Figs. 3 (gates in top 
panel) and 41; wild-type CD43+B220+ B 
cells; and more mature wild-type 
CD43-B220+ B cells. 

B cell precursors in IgP-I- mice closely 
resembled their RAG-1 -I- counterparts in 
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Fig. 3. €3 cell development is blocked at an early stage In Igp rnice. (A] Histological 
analysis of yrnph node lLNl and spleen lSp1 fl-on1 Igp mice and i~tterrnate controls i V O I  
(291. 16) Fiow cytunletric analysis of Sp cells. thytnocytes (Thy). and bone rnarrow iBMI 
cells from W. RAG . and lgl3 niice (301. Plots show representative data taker7 frorn 
tilice to f~ve consecutive experrrlents. The lgki yene IS ir) the 129 Sv backgrouncf. 
~rytlich has only small numbers of cells in fraction C (311. The relati\,e dstribut~on of gated 
cells in fractions A.  B. and C was 52"~. 40r',. and 80u for W: 35"q. 55".1. arid 10JJ for 

lgp : and 3 7 ' ~ .  45"~~. and 1 8i'u tor RAG . respectively. In three independent exper- 
iments, therc were no reproducible slgn~ficarit differences between the strains. 

early pre-B stage ( J ,  17). This is in con- 
trast to the phenotype observed when the 
transmembrane domain of Igp is disrupted 
(pMT-I-) (18). pMT-1- B cells cannot 
produce m p  and therefore do not assemble 
a my-Iga-Igp complex [precursor B cell 
receptor  re-BCR)]. Despite the lack of a 
pre-BCR in pMT-I- mice, CD43+B220+ 
pre-B cells accumulate normal numbers of 
V, to DJ, joints (18). Thus, the absence 
of m p  allows development to proceed to a 
stage that is competent for VH to DJ, 
joining, whereas the absence of IgP results 
in B cells that fail to progress beyond D, 
to J, recombination despite high amounts 
of expression of RAG- 1, RAG-2, sterile V,, 
I , and pO. The finding that transcription of 
&G-1, RAG-2, and sterile p is sufficient for 
D, to J, but not V, to DJ, joining is in 
agreement with experiments with transgenic 
recombination substrates ( 19). Together, 
these genetic experiments strongly support a 
mp-independent role for IgP in regulating B 
cell development. 

Pre-BI cells are found in human tumors 
and can be isolated by Abelson virus 

development that is earlier than suspect- 
ed, possibly working in conjunction with a 
proposed surrogate heavy and light chain 
complex (9, 21 ). 

Fig. 4. lmmunoglobulin A FRot h8C D,E 

gene rearrangement in -- 
~gp-I- mice. (A) ~ecom- ~ L A  
bination of VJ558L family WJn 

to DJ, or of D, to JH seg- 
ments measured by PCR wH- 

(76,24,32). DNA samples 
were extracted from sort- 
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Homocysteine Antagonism of 
Nitric Oxide-Related Cytostasis in 

Salmonella typhimurium 
Mary Ann De Groote, Traci Testerman, Yisheng Xu, 

George Stauffer, Ferric C. Fang* 

Nitric oxide (NO) is associated with broad-spectrum antimicrobial activity of particular 
importance in infections caused by intracellular pathogens. An insertion mutation in the 
metL gene of Salmonella typhimurium conferred specific hypersusceptibility to S-nitro- 
sothiol NO-donor compounds and attenuated virulence of the organism in mice. The metL 
gene product catalyzes two proximal metabolic steps required for homocysteine bio- 
synthesis. S-Nitrosothiol resistance was restored by exogenous homocysteine or intro- 
duction of the metL gene on a plasmid. Measurement of expression of the homocysteine- 
sensitive metH gene indicated that S-nitrosothiols may directly deplete intracellular ho- 
mocysteine. Homocysteine may act as an endogenous NO antagonist in diverse pro- 
cesses including infection, atherosclerosis, and neurologic disease. 

N i t r l c  oxide has antlmicroblal activity 
against a broad array of pathogens ranging 
from viruses to hellninths ( 1  ), but the spe- 
cific reactive nitrogen interlnediates re- 
sponsible for this activity are undetermined. 
S-Nitrosothiols such as S-nitrosogluta- 
thione ( G S N O )  are candidate endogenous 
antimicroblal mediators because they have 
broad-spectrum microbiostatic act~vi ty  ( 2 ,  
3 )  and have been detected during inflam- 
matory states in vivo (4). Although S-ni- 
trosothiols can f ~ ~ n c t i o n  as NO'  donors, ob- 
servations in the Gram-negative bacterium 
Salmonella typhimurium suggest that their 
cytostatic activity actually results from 
N O t  (nitrosonium) transfer after active 
transport of the S-nitrosothiol into the tar- 
get cell (2) .  Salmonella provides a model 

svstem in which to  examine the antimicro- 
bial properties of N O  because it is geneti- 
cally well characterized (5), resides princi- 
pally within host cells (6), and requires host 
expression of NO-stimulatory cytokines for 
effective clearance (7). 

A S . typhimurium M L I ~ J  (8) transposon 
library was enriched for mutants hypersus- 
ceptible to  S-nitrosothlols by simultaneous 
exposure to cycloserine and subinhibitory 
conce~ltratio~ls of G S N O  (9). A clone 
hiphlv suscevt~ble to G S N O  and other ni- 
tr&o;hiols \;as found to  harbor a n  insertion 
in the  metL gene ( lo ) ,  encoding the bifunc- 
tional enzyme aspartokinase 11-homoserine 
de l~~drogenase  I1 (AKII-HDII). T h e  metL 
mm~tant strain was designated S. typid- 
murium blF1000. AKII-HDII catalyzes two 
independent proxi~nal steps in the prokary- 
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