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Very few of the enzymes required for eukaryotic precursor ribosomal RNA (pre-rRNA) 
processing have been identified. Ribonuclease (RNase) MRP was characterized as a 
nuclease that cleaves mitochondrial replication primers, but it is predominantly nucleolar. 
Previous genetic evidence revealed that this ribonucleoprotein is required, directly or 
indirectly, for cleavage of the yeast pre-rRNA in vivo at si teh. Here, an in vitro processing 
system that accurately reproduces this cleavage is described. Biochemical purification 
and the use of extracts depleted of the MRP RNA demonstrate that endonucleolytic 
cleavage of the pre-rRNA is directly mediated by RNase MRP. This establishes a role for 
RNase MRP in the nucleolus. 

Three  of the four eukaryotic ribosomal 
RNAs are produced by processing a long 
precursor RNA (Fig. 1A). Genetic analysis 
in the yeast Saccharomyces cerewisim pro- 
vides a means to dissect this processing 
pathway and identify the factors and steps 
involved (I). Nevertheless, study of the 
biochemical mechanisms underlying pre- 
rRNA processing would be facilitated by 
the development of tractable in vitro sys- 
tems. The ribonucleoprotein RNase MRP 
was identified as an endonuclease that 
cleaves mitochondrial replication primers 
in vitro (2). However, its predominantly 
nucleolar localization (3) and the reported 
existence of another enzyme able to cleave 

mitochondrial primers (4) have led to some 
controversy about RNase MRP's cellular 
function. Mutations in two components of 
yeast RNase MRP, the MRP RNA (5, 6) or 
Poplp protein (7), inhibit in vivo cleavage 
of the pre-rRNA at a site, designated A,, 
located upstream of the 5.8s rRNA (7,8). It 
was, however, unclear whether RNase MRP 
participated directly in this cleavage event. 

Poplp is a component of both RNase P 
and RNase MRP (7). A tagged version of 
Poplp fused to two immunoglobulin G 
(1gG)-binding regions of Staphylococcus 
aureus protein A (ProtA-Poplp) is func- 
tional in vivo and efficiently coprecipi- 
tates the RNase P and MRP RNAs (7). 

Poplp by affinity selection with i g ~  aga- 
rose beads (10). We first tested whether 
yeast RNase P activity (I I )  could be de- 
tected by this strategy. A ProtA-Poplp 
precipitate cleaved a radiolabeled pre- 
tRNA (Fig. 1B). This reaction was most 
likely mediated by RNase P for the follow- 
ing reasons. (i) Cleavage was dependent 
on the presence of ProtA-Poplp (Fig. 1B). 
(ii) Cleavage was accurate (12, 13). (iii) 
Micrococcal nuclease treatment of the pre- 
cipitate inhibited cleavage (13). (iv) The 
sup3e-A1 mutant pre-tRNA, which is defec- 
tive for cleavage by RNase P (14), was not 
processed in our assay (13). Thus, affinity 
selection of ProtA-Poplp can be used to 
detect associated enzymatic activities. 

We tested next whether the same pre- 
cipitates could process the 35s pre-rRNA. 
Because of the large size of the pre-rRNA 
substrate (7 kb), the products of the reac- 
tion were analyzed by primer extension 
(10). A primer extension stop appeared 
after incubation of the 35s pre-rRNA sub- 
strate with a ProtA-Poplp precipitate 
(Fig. 1C). This stop mapped to site A, 
(Fig. 1C) and was not detected when ex- 
tracts from a strain expressing nontagged 
Poplp were used (Fig. lC) ,  showing that 
ProtA-Poplp or associated factors (or 
both) mediate this reaction (15). The pro- 
cessing activity contains an essential RNA 
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component because it was inactivated by 
micrococcal nuclease (Fig. 1C). A 10-nu- 
cleotide (nt) deletion immediately 3' to 
site A, prevents processing at this site in 
vivo (8). A 2.5-kb substrate (Fig. 1A) 
carrying this mutation was not processed 
in vitro, whereas a control wild-type 2.5- 
kb transcript was processed (Fig. ID), in- 
dicating that the in vitro reaction mimics 
processing in vivo. Our results show that a 
micrococcal nuclease-sensitive activity 
associated with Poplp accurately cleaves 
the pre-rRNA at site A, in vitro. 

The RNase MRP and RNase P RNAs 
are the major RNA species found in a 
ProtA-Poplp precipitate when assayed by 
end-labeling (13); therefore, one of the cor- 
responding endonucleases is most likely to 
mediate the in vitro pre-rRNA processing 
reaction. RNase P and MRP were separated 
by biochemical purification ( 16) (Fig. 2A). 
In the most purified MRP fraction (M2), no 
RNase P RNA could be detected, whereas 
the purest RNase P fraction (P2) contained 
only trace amounts of MRP RNA (Fig. 2B). 
The peak RNase MRP and P fractions from 
each column were affinity-selected on IgG 
agarose beads and assayed for cleavage of a 
pre-tRNA substrate and the 35s pre-rRNA 
substrate (Fig. 2, C and D). Accurate endo- 
nucleolytic cleavage of the pre-tRNA was 
detected in the RNase P-containing frac- 
tions but not in the fractions highly en- 
riched for RNase MRP (Fig. 2C). Converse- 
ly, processing of the 35s pre-rRNA was 
specifically detected in the RNase MRP 
fractions (Fig. 2D). 

We used an in vivo depletion strategy 
(1 7) to demonstrate that RNase MRP, rath- 
er than a copurifying ribozyme, is responsi- 
ble for the processing reaction. Extracts 
were prepared from cells that conditionally 
transcribe the MRP RNA (6) and also ex- 
press ProtA-Poplp. In vitro cleavage of the 
35s pre-rRNA at site A3 was lost in extracts 
prepared after in vivo depletion of MRP 
RNA (Fig. 3A). MRP RNA depletion did 
not affect RNase P activity (Fig. 3B). Ex- 
tracts prepared from wild-type cells grown 
under the same conditions were active for 
processing at site A3 (Fig. 3A) and RNase P 
activity (Fig. 3B). Therefore, depletion of 
the MRP RNA specifically affected process- 
ing at site A,. We conclude that RNase 
MRP directly and accurately processes the 
pre-rRNA at site A3 in vitro. 

To  better define the substrate require- 
ments for pre-rRNA processing, we tested 
a 141-nt transcript overlapping site A3 
(Fig. 4A). This short substrate was pro- 
cessed accurately at site Ag by a precipi- 
tate of fraction M2 (and M1) containing 
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highly purified RNase MRP (Fig. 4B). In- (Fig. 4C), corresponding to the 5' and 3' 
cubation of internally labeled 141-nt sub- cleavage products, respectively. Cleavage 
strate with a purified RNase MRP precip- at site A, by RNase MRP is therefore 
itate produced fragments of 81 and 60 nt  endonucleolytic, and the information re- 
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ing direct comparison of the ratio of RNase P and MRP RNAs. Traces of RNase MRP RNA could be 
detected in fraction P2 after longer exposure, whereas only a background signal could be detected in the 
slot containing the M2 fraction probed for RNase P RNA. (C) Assay of the pre-tRNA processing activity 
by precipitates of the fractions. Precipitates from total extract (lane 3), the Resource Q MI and PI 
fractions (lanes 4 and 5), and the Mono S M2 and P2 fractions (lanes 6 and 7) were assayed for pre-tRNA 
processing. A mock-treated substrate is presented in lane 2 and a molecular size marker in lane 1 with the 
size of the corresponding bands (in nucleotides) indicated on the left. Some nonspecific degradation is 
apparent in lanes 4 and 6, but no specific cleavage is detected. (D) Assay of the pre-rRNA processing 
activity in precipitates of the fractions. In lanes 3 to 7, pre-rRNA processing was assayed with the same 
fractions as for the pre-tRNA processing in (C). Lane 2 shows a mock-treated RNA, and lane 1, RNA 
extracted from wild-type cells. Sub., substrate. 

Fig. 3. Precipitates of extracts A 
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RNase MRP RNA do not process 9 m14RP wt 
pre-rRNA at site A,. (A) In vitro $ - cleavage of the pre-rRNA substrate -. - - - -P~~RNA 
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galactose-regulated NMEl gene - -- 
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Extracts were prepared from cells 
grown on galactose (lanes 3 and 6) 
andfromcellsgrownonglucosefor ' * 
3 hours (lanes 4 and 7) and 12 hours (lanes 5 and 8). Under these conditions the MRP RNA amount 
reaches a minimum after 8 hours (6). Lane 1, RNA extracted from wild-type cells; lane 2, mock-treated 
RNA. (B) Pre-tRNA processing by precipitates of the same extracts. Lanes are as for (A), except that lane 
1 is omitted. 
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auired for substrate recoenition is con- - 
tained in a 141-nt fragment of the pre- 
rRNA. 

A low level of aberrant processing of the 
141-nt substrate 1 nt 3' to site A3 was 
observed with our purest RNase P prepara- 
tion (18) (Fig. 4, B and C, lane 4 in each). 
The 141-nt substrate may be recognized by 
RNase P because of a structural resem- 
blance to pre-tRNA or because of its bind- 

141-nt substrate 

Sub. -0 Sub. -1 

1 2 3 4 5  1 2 3 4 5  

Fig. 4. A 141-nt pre-rRNA substrate is recog- 
nized and cleaved endonucleolytically by RNase 
MRP. (A) Location of the 141 -nt substrate. The 
35s pre-rRNA is shown on top, and the region 
surrounding site A, is shown enlarged below. 
The 141 -nt substrate extends from 3 nt down- 
stream of the A, site to 9 nt upstream of the B1, 
site (8). (B) In vitro processing of an unlabeled 
141 -nt substrate (Sub.). The products of the re- 
action with IgG precipitates of the peak RNase 
MRP (lanes 1 and 3) and P (lanes 2 and 4) frac- 
tions were detected by primer extension. The 
bands corresponding to the substrate RNA and 
the A, cleaved product are indicated. Lane 5 is a 
mock-treated substrate. Note that about 250 
fmol of the substrate were used, approximately 
50-fold more than the labeled substrate used for 
the experiment depicted in (C). (C) Endonucleo- 
lytic cleavage of the 141 -nt substrate by RNase 
MRP, Internally labeled 141 -nt substrate was in- 
cubated with IgG precipitates of the peak RNase 
MRP (lanes 1 and 3) and P (lanes 2 and 4) frac- 
tions, and the products were detected after gel 
electrophoresis. The positions of migration of 
the substrate and the 5' and 3' cleavage prod- 
ucts are indicated. The 3' product always ap- 
pears as a doublet, because of a 1 -nt heteroge- 
neity at the 3' end of the substrate, generated 
during in vitro transcription. The 3' and 5' frag- 
ments were identified by processing end-labeled 
substrates (13). 

ing to Poplp. Only low levels of aberrant 
cleavage could be detected with the longer 
substrates (Figs. 1 to 3), possibly because 
folding of these longer RNAs interferes 
with RNase P binding or catalysis or both. 
This cleavage was not detectable in vivo (7, 
8, 13). Another in vitro substrate for RNase 
MRP, the mitochondria1 replication primer, 
is also cleaved by RNase P (19). These 
observations are consistent with a recent 
model proposing that RNase MRP and its 
role in eukaryotic pre-rRNA processing 
evolved from RNase P (20). 

Few reactions that reproduce steps of the 
eukaryotic pre-rRNA processing in vitro 
have been described (21 ). We have shown 
that steps of yeast pre-rRNA processing can 
be accurately reproduced in vitro by the 
genetic identification of the components 
implicated and the use of tagged proteins to 
specifically enrich for the desired activity. 
A similar strategy could be applied to the 
study of other complex cellular processes. 
Our results demonstrate that RNase MRP 
accurately cleaves pre-rRNA at site A, in 
vitro. From this and previous in vivo stud- 
ies of RNase MRP mutants, we conclude 
that RNase MRP is directly implicated in 
rRNA processing, consistent with its nu- 
cleolar localization. 
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