to CD3 (20). The T cell marker may be
down-regulated after fusion with DCs, or the
DCs may simply require contact with T cells
to support viral replication.

Efforts can now be directed to determine
whether DCs within the many lymphoid
organs of the pharynx, collectively termed
Waldeyer’s ring, consistently represent a
major site for HIV-1 replication early in
disease. Infants who swallow virus from
mothers during birth or breast feeding also
may be infected initially in these tissues.
Other extralymphoid sites in which DCs
and T cells may interact and promote
HIV-1 replication include inflamed genital
surfaces and the afferent lymphatics that
originate from just beneath the mucosa.
Simian immunodeficiency virus DNA has
been detected in presumptive DCs just be-
neath the uterine mucosa of monkeys that
were acutely infected with the virus intra-
vaginally (24). Further attention to tissues
that contain interacting DCs and T cells
may provide insight into critical sites for
HIV-1 replication in situ.
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Equilibrium-Point Control Hypothesis
Examined by Measured Arm Stiffness
During Multijoint Movement

Hiroaki Gomi and Mitsuo Kawato

For the last 20 years, it has been hypothesized that well-coordinated, multijoint move-
ments are executed without complex computation by the brain, with the use of springlike
muscle properties and peripheral neural feedback loops. However, it has been technically
and conceptually difficult to examine this “‘equilibrium-point control’” hypothesis directly
in physiological or behavioral experiments. A high-performance manipulandum was de-
veloped and used here to measure human arm stiffness, the magnitude of which during
multijoint movement is important for this hypothesis. Here, the equilibrium-point trajectory
was estimated from the measured stiffness, the actual trajectory, and the generated
torque. Its velocity profile differed from that of the actual trajectory. These results argue
against the hypothesis that the brain sends as a motor command only an equilibrium-point

trajectory similar to the actual trajectory.

Humans can extend their arms toward a
visual target effortlessly. However, recent
studies in robotics (1) and computational
neuroscience (2) have revealed that be-
cause of nonlinear interaction forces be-
tween the arm’s many degrees of freedom,
complex computations are required to gen-
erate the motor commands necessary to re-
alize a desired trajectory faithfully. Al-
though this statement is generally true re-
garding the whole computational machin-
ery including the brain, the spinal cord,
reflex loops, and muscles, a widely accepted
premise is that the brain avoids such com-
plex computations because it can rely on
the beneficial elastic properties inherent in
muscles and peripheral reflex loops. Numer-
ous theories and models have been devel-
oped along these lines (3-6), and some can
be summarized as the following control
scheme: The brain sends an “equilibrium-
point trajectory,” which is similar to the
desired trajectory, to the periphery as a
motor command. The equilibrium-point
trajectory is a time series of equilibrium
points, each of which would be realized
because of the mechanically stable elastic
properties of the muscles and reflexes if the
motor command at some instant were
maintained indefinitely. Because the limb
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will realize a trajectory that is similar to the
equilibrium-point trajectory and because it
is known (7) that arm movements are well
approximated by simple geometric curves, it
follows that the equilibrium-point trajecto-
ry should be simple too. These simple equi-
librium-point trajectories can be planned
without complex computation.

Few researchers doubt that the spring-
like properties of the neuromuscular system
are of importance in maintaining stable
posture (8). The crucial question, however,
is how far this system by itself suffices to
generate movement. We investigated
whether the equilibrium-point trajectory
reconstructed from humans was similar to
their actually realized trajectories, one of
the major assumptions of the equilibrium-
point control hypothesis (9).

Several simulation studies conducted to
investigate this question (4-06, 10) revealed
the critical importance of the magnitude of
arm stiffness during movement. That is, if
the arm stiffness during movement is large
[on average, 67.9 N m/rad for the shoulder
and 78.0 N m/rad for the elbow in (4)], then
the equilibrium-point trajectory is similar to
the actual one, and complex computations
are thus not necessary. On the other hand, if
the arm stiffness is small [19.5 N m/rad for
the shoulder and 15 N m/rad for the elbow
in (10)], the two trajectories are very differ-
ent and computation is necessary for calcu-
lating this complicated equilibrium-point
trajectory. Thus, it is critical to measure arm
stiffness during multijoint movement.
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Unfortunately, this is much more diffi-
cult than conducting measurements during
posture maintenance (1) or during single-
joint movement (12, 13), and data from
these other conditions cannot be used. The
stiffness measurement invokes application
of external forces to the arm by a manipu-
landum and measurement of the resulting
trajectory perturbations. If the perturbation
is too large or the manipulandum is too
heavy, test participants cannot complete
natural point-to-point movements. On the
other hand, if the perturbation is too small,
a reliable estimation cannot be accom-
plished. To circumvent these problems, we
developed the parallel link drive air-magnet
floating manipulandum (PFM) (Fig. 1). It is
fast and light enough to minimize move-
ment interference but strong enough to
transmit large forces and rigid enough to
produce reliable estimates.

Another difficulty in such measurements
concerns the nonlinear dynamics of the
arm. If inertial parameters, which change in
time during movement, are directly estimat-
ed in joint or Cartesian coordinates (14),
many independent inertial parameters must
be estimated at different postures, which
may lead to an unreliable estimation. We
developed a new estimation method that
requires only three parameters of the arm
dynamics for the entire movement duration
by assuming that the human arm can be
modeled as a two-link rigid body (15). The
applied external forces were decomposed
into arm dynamics and muscle-generated
force, the latter of which consists of viscos-
ity and elastic force. The estimated coeffi-
cient of the position relating to the elastic
force is the required stiffness (15).

Three test participants (two males and one
female, 26 to 34 years old, right-handed) par-
ticipated in this study. Each person sat in
front of the PFM while strapped securely to
the chair back (Fig. 1). Small force perturba-
tions lasting for a brief period (about 0.2 s)
pushed the person’s hand and then pulled it
back (6 to 8 mm) in eight directions at nine
times before, during, and after movements.
These 72 (8 X 9) different perturbations were
applied within each set in random order.
Eight data sets were recorded for each person,
excluding failed trials (Fig. 1). Test partici-
pants were instructed to follow the target
movement with high accuracy (<3 cm), but
the target was deliberately extinguished for
0.4 s after the perturbation was initiated. Test
participants could not tell the direction, and
sometimes even the time, of the perturbation.
Thus, it was very unlikely that they voluntar-
ily changed their motor commands in re-
sponse to different perturbations. The squares
of the correlation coefficients between the
reconstructed applied external torques and
the real ones were between 0.85 and 0.98 for
27 (9 times X 3 people) estimations, which
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indicates the high reliability of the method.
The upper row of Fig. 2 shows the stiff-
ness ellipses calculated from these data dur-
ing multijoint movement. The ellipses rep-
resent the direction and magnitude of elas-
tic, resisting forces to unit-length position
perturbations in all directions. The long
axis of each ellipse represents maximum
force, indicating the greatest stiffness. Con-
versely, the short axis represents minimum
force, indicating the least stiffness. Because
0.3 s of data were used to estimate stiffness
after the perturbation was initiated, both
the muscle’s intrinsic elastic property and
its short-latency reflexes contributed to the
estimated stiffness. The numbers attached
to these ellipses indicate the nine times of
estimation, each separated by 0.2 s before
the movement (1 and 2), at the movement
start (3), during (4 to 7), and then after (8
and 9) the movement. At the first pertur-
bation time, the stiffness ellipses were thin
with their long axis oriented toward the
shoulder, which is a common feature of
stiffness ellipses “during posture mainte-
nance (I1). The ellipses started to enlarge
around movement start (2 to 4). The areas
of the ellipses (11) during the movement (4
to 7) were on average 7.2 times larger than
those during relaxed, corresponding pos-
tures. This increase most likely reflects the
muscle tension required to execute the

Fig. 1. The parallel link drive air-magnet floating
manipulandum (PFM) and the experimental setup
for measuring human arm stiffness. The two thin
links are driven by two wide links, and the wide
links are directly driven by two powerful electric
motors placed under the table. The handle of the
manipulandum (each person’s hand position) is
supported by an air-magnet floating mechanism
to prevent the person’s arm from leaning and to
avoid friction. Because of this special mechanism
and the parallel link architecture, no bending force
is imposed on the links, and the links can be very
light and thin but still rigid enough within the hori-
zontal plane. The handle and the supporting beam
can be rotated freely at the top of the links within
the horizontal plane. The participant’s hand posi-
tion (handle center) was measured by the joint
position sensors of the PFM, and the force exert-
ed by the PFM on the hand was measured by a
force sensor placed between the handle and the
PFM links. The PFM was controlled by a digital

movement. Along with the size change, the
shape of the ellipses during movement (4 to
7) became slightly thicker than those while
posture was maintained [the ratio of long
and short axes of movement (2.7 * 0.6)
was significantly different from those of pos-
ture (5.1 *= 2.3)].

The lower row in Fig. 2 shows the tempo-
ral changes of shoulder and elbow joint stiff-
ness and two-joint stiffness (R, calculating
elbow torque from shoulder rotation) during
movement, with their 90% confidence inter-
vals. The shoulder stiffness increased around
movement start, slightly decreased in the mid-
dle of the movement, then increased again
around movement end. This is similar to data
from elbow single joint movements (13). The
timing of the stiffness decrease might corre-
spond to the switch from shoulder extensor
activation to shoulder flexor activation for
decelerating the shoulder extension move-
ment. The ratio between the stiffness compo-
nents (shoulder, elbow, and double joints)
changed dynamically during movement. This
change was not observed while posture was
maintained (11), which indicates that the
activation pattern of the muscles was greatly
changed during movement. In contrast to sin-
gle joint cyclic movements (12), the joint
stiffness values during movement were always
larger than those during corresponding pos-
tures. All stiffness components decreased after

Current

Start

signal processor (0.5 ms per cycle) to reduce the dynamical effects of the PFM on each person’s hand.
The effective mass and viscosity were 0.65 kg and 4.40 N/(m/s), respectively. The x axis indicates the
rightward direction, and the y axis indicates the frontal direction away from the body. The origin is the
shoulder position. The right forearm was placed in a molded plastic cuff tightly coupled with the handle
(the same movements of the handle, the cuff, and the arm were confirmed in advance by an optical
position sensor) and supported in the vertical direction by the beam. The hand was able to move freely in
any direction within the horizontal plane at shoulder level. Each participant moved his or her hand from the
start position displayed as a crossed circle onsa cathode ray tube (CRT) (top), which corresponds to
position S = —0.2 m, 0.45 m on the hand plane, to the end position (crossed circle), which corresponds
to position £ = 0.2 m, 0.45 m on the hand plane. The current hand position was displayed by a cursor
with afilled circle on the CRT. The movement duration of 1 s was determined by beeping sounds, and the
movement magnitude was 0.4 m. To reduce the trajectory variance, a reference hand trajectory, which
itself consisted of each person’s averaged trajectory from pre-trials, was also displayed by a moving
target (open circle) on the CRT. Only those trajectories close to the reference trajectory (<3 cm at each

time step) were recorded for data analysis.
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movement. The elbow joint stiffness (range, 3
to 14 N m/rad) during single joint movement
explored by different perturbation patterns
(random and step in several amplitudes) (12,
13) did not differ considerably from our results
here (range, 5 to 21 N m/rad). Slightly greater
stiffness in multijoint movement might be
ascribed to forces of interaction between the

three participants here were calculated from
actual trajectories, generated muscle torques,
and the estimated joint stiffness (Fig. 3)
(16). Figure 3 shows the x axis (main move-
ment component) position as a function of
movement time and the tangential velocity
profiles. The dash-dot curves indicate the
actual trajectory, and the solid curves show

shoulder and the elbow.
The equilibrium-point trajectories for the

the equilibrium-point trajectory. The mean
and standard deviation of the maximum dif-
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Fig. 2. Stiffness ellipses (top) and joint stiffness values of shoulder (R, black), elbow (R,,, red), and
two-joints (R, green, and R, blue) (bottom) for test participants a, b (female), and c. At the top, the start
and end arm configurations are shown by stick figures in the (x, y) coordinates defined in Fig. 1. The center
of each stiffness ellipse is located at the hand position for the corresponding arm configuration during the
movement. The ellipses colored magenta denote the stiffness during movement (4 through 7). First, joint
stiffness values were calculated as described (75); then, to draw the ellipses, we calculated the hand
stiffness by a coordinate transformation. Time 0 at the bottom denotes the first beeping sound (b1). The
participants were instructed to start from position S (see Fig. 1) at the third beep (b3), to stop in position
E at the fourth beep (b4), and to hold their hands there until the fifth beep (b5). The thick horizontal line
denotes the movement duration. The perturbation force used for measuring the third ellipse began 0.1 s
before b3 (movement start), and that for the eighth ellipse began 0.1 s before b4 (movement end). Each
error bar denotes the 90% confidence interval of each estimate.

Fig. 3. The x axis (main move-
ment component) position of the
equilibrium-point trajectory as a
function of movement time with
the error bars calculated from
90% confidence interval (solid
curves at the top), and the tan-
gential velocity profiles of the
equilibrium-point trajectories (sol-
id curves at the bottom) for test
participants a, b, and c. The
dash-dot curves indicate the ac-
tual trajectory in each figure. Ac-
cording to the equilibrium-point
control hypothesis (3, 4), the equi-
librium point (q,,) represented in
joint-angle coordinates is calculated as follows:

Qeq = R™'(m, + Dg) +q 3
Other notations are the same as in (75). This equation is derived from the linear approximation of 7, in Eq.
1 around the actual trajectory just as in Eq. 2 such as 7,, = R(Qeq — G) — D@. Note that 7,, = 0 holds while
q = Qg q = 0 from the definition of the equilibrium point. In Eq. 3, R and D were already estimated, and
q and q are simply the unperturbed, control trajectory and its velocity, respectively. T,, can be calculated
from the difference of the left side of Eq. 1 and the measured 7,,. Consequently, the equilibrium-point
trajectory can be calculated from experimental data. It was computed every 0.05 s from R and D, which
were interpolated between estimated values at every 0.2 s by a third-order spline. The equilibrium hand
position in Cartesian coordinates was derived, by a coordinate transformation, from that in joint coordinates.

x(m)

Tangential velocity (m/s)
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ference in the equilibrium position calculat-
ed from 90% confidence intervals of the
estimated stiffness and the viscosity are
0.0050 m and 0.0063 m for nine positions
and three participants, which indicates the
high reliability of the calculation. The equi-
librium position first led the actual position
to generate the accelerating torque, then fell
behind the actual position to generate the
decelerating torque. All of the velocity pro-
files of the equilibrium-point trajectory had
multiple peaks, which are very different from
the actual velocity profiles. The equilibrium-
point velocity, in particular, increased rapid-
ly and peaked just after the initiation of the
movement. These results imply that the
brain needs to acquire some internal models
of the controlled objects (17).
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56 + oH | aq oH 5
q ad 6q + E + aq q
_ Tin
T g
= - D3q — R3qQ + 87ex 2

where 3q, 84, and 3G are positional, velocity, and
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imposed force perturbation 37, by the PFM. In the
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Role of the Nuclear Transport Factor p10
in Nuclear Import

UIf Nehrbass and Giinter Blobel*

The nuclear import factor p10 was cloned from Saccharomyces cerevisiae and found to
be essential. The protein p10 can bind directly to several peptide repeat-containing
nucleoporins. It also binds to the guanosine triphosphatase (GTPase) Ran in its guanosine
diphosphate (GDP)-bound form and to karyopherin B. Assembly of the karyopherin het-
erodimer on immobilized nucleoporin yielded cooperative binding of p10 and Ran-GDP.
Addition of GTP to this pentameric complex led to dissociation of karyopherin «, pre-
sumably via in situ formation of Ran-GTP from Ran-GDP. Thus, p10 appears to coordinate
the Ran-dependent association and dissociation reactions underlying nuclear import.

Protein import across the nuclear pore com-
plex (NPC) is mediated by at least four
soluble factors. These cytosolic factors re-
store nuclear import in cells depleted of cy-
tosol by digitonin permeabilization. Two of
these factors form a heterodimer termed
karyopherin (1-9). Karyopherin a binds to
nuclear localization sequence (NLS)-con-
taining proteins (2, 10-12), and karyopherin
B mediates docking to peptide repeats of
nucleoporins (I, 10, 13). The GTPase Ran
(14, 15) and an additional protein referred
to as p10 (10, 16, 17) are required for sub-
sequent translocation of the docked NLS
protein into the nucleoplasm (1, 10, 14, 16)
along with karyopherin a. Karyopherin B
remains bound to the NPC (8, 10). The role
of pl0 in the translocation reaction is not
clear. It can bind to the nucleoporin p62
(17) and appears to form a complex with
Ran in the cytosol (16), although a direct
interaction has not yet been demonstrated.

Saccharomyces cerevisiae contains a con-
served set of import factors (18). In solu-
tion-binding assays (19), the karyopherin
of heterodimer (Kap60a and Kap958) as-
sociates with either NLS protein or nucleo-
porin FXFG (phenylalanine-X-phenylala-
nine-glycine) repeats in a cooperative fash-
ion. Moreover, Ran-GTP dissociates the
heterodimeric af complex by binding to
karyopherin B, thus releasing the karyo-
pherins from the nucleoporin docking site.
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Ran-GDP binds to karyopherin B with
much lower affinity and does not induce
dissociation (20). As docking and release are
principal functions of soluble factors, nucle-
ar translocation has been proposed to result
from repeated docking and release reactions

along an array of docking sites on the NPC
fibers (13). Because Ran-GTP is the major
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Fig. 1. Blot overlay binding of gold-conjugated p10
to a subset of nucleoporins. Proteins of yeast nu-
clear envelopes (26, 28) were separated by SDS-
PAGE and transferred to nitrocellulose. The protein
pattern is shown by Amido black staining (lane 5).
Strips were probed with p10-gold conjugate (27) in
the absence (lane 2) or presence (lane 3) of a 200-
fold excess of nonconjugated p10, or were probed
with a BSA-gold conjugate (lane 4). Another strip
(lane 1) was probed with monoclonal antibodies 14
and 192 (29), which recognize the peptide repeat
motifs of various nucleoporins, and with an affinity-
purified antibody against Nup36 (37).
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