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Protective Effect of Rotavirus VP6-Specific IgA 
Monoclonal Antibodies That Lack Neutralizing Activity 

John W. Burns, Majid Siadat-Pajouh, Ajit A. Krishnaney, 
Harry B. Greenberg 

Rotaviruses are the leading cause of severe gastroenteritis and dehydrating diarrhea in 
young children and animals worldwide. A murine model and "backpack tumor" trans- 
plantation were used to determine the protective effect of antibodies against VP4 (an outer 
capsid viral protein) and VP6 (a major inner capsid viral protein). Only two non-neutralizing 
immunoglobulin A (IgA) antibodies to VP6 were capable of preventing primary and re- 
solving chronic murine rotavirus infections. These antibodies were not active, however, 
when presented directly to the luminal side of the intestinal tract. These findings support 
the hypothesis that in vivo intracellular viral inactivation by secretory IgA during trans- 
cytosis is a mechanism of host defense against rotavirus infection. 

Mucosal  IgA is a secretory antihoiiy that mechanisms by which secretory IgA pro- 
forms a first line of defense against inany vides protection have heen proposed (2).  
pathogens. It is synthesized as an oligotneric Recently, Mazanec et al. described an in 
lnolec~ile that can he transported via trans- vitro model in which transcytosing IgA 
cytosis across certain epithelial cell types molecules form colnplexes with certain vi- 
lining mucosal surfaces and then released ruses that have entered the cell and thereby 
into the mucosal environment ( 1  ). Several inhibit viral replication intracell~ilarly (3). 

T o  determine whether this can occur in 

Depariments of Medlclne and ~ l c r o ~ l o ~ o g y  and Immu. v i v ~  and whether tlon-neutralizi~~g antihod- 
noloa\! Med~ca  School Lab Surae Buidlna. Room P304 ies can mediate this il~tracellular effect, we 
StanLrd Un~vers~ty School of h e d ~ c n e , ~ ~ t a n f o r d .  CA studied effects of I ~ A  l,lonoclollal anti. 
94305, and the Veterans Adm~n~strat~on (VA) Palo Alto 
Health care System, 3801 Mlranda~venue (154.~) ,  palo h ~ d i e s  (mAbs) (111 rotavirus i~lfectinn in 
Alto. CA 94304, USA. mice. 
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Ri>tar,iru-es cause 13Q miIlii>n e x e s  o f  
gastroenter~tis anil diarrhea 11-orld~iile ( 4 ,  
5). ,A rotaviriis's prntei~-i-coate~l RN.4 core 
IS s i ~ r r ~ ) u ~ ~ ~ l e ~ i  l 7 ~ -  a seco~-iii 171-otei1-i layer 
co~i lpose~l  ~ > f  \'P6 (42 k n ) .  \JP6 ~llalies LIP 
about ji?"t, of the \ r i r~ i>~ l  mass a~ l i i  is highly 
~mmi~nogen ic ;  I-it~~vever, antihi)iiy to \'P6 
does n ~ ) t  11ar.e neutra l~zi~lg  activity in r.itro 
(4, 6) .  TIYO r.iral proteins of the outermost 
protein coat, the viral hemaggli~tinin \'P4 
( S i  ti> 88 k D )  anil the r-iral gl\-coprotein 
\'Pi ( 37 k n ) ,  have l x e n  iiirectl\- i1nylic,1ted 
as target\ of serotype--pecific ne~rtrali:atio~-i 
111 \,itrc> 2nd 171-otection 111 viva (0). HOTY- 
ever, the  presence of 1-ie~1trali:ing antihoiiy 
to rota\-irus in  \erum ma\- not ci)rrelate ~ \ - ~ t h  
protection ( 7 ,  a ) ,  anii in -ome s t i~ i l~es  of 
humans anii an~mals ,  protection aqainst ri)- 
tar.iri~s infection appears to he qerotype- 
~n~ iepen i l en t  ( 7 )  There 1s a strong correla- 
t ~ o n  between r-irus-specific ~ n t e s t ~ n a l  IgA 
alnoullts ,111~1 protection in vivo (8-1 i'). 

W e  ha\re ~rolateil and c11nracteri;eii a 
lil~rary nf Igr\-secreting mAbs directeii at  
several rota\-irus proteins and e\.aluateii 
the111 in the muri~-ie ~lloiiel of rotavirus 111- 
f e c t ~ o ~ l  ( 8 ,  9 .  1 1 ). ;\lonoclonal ant ihod~es  
of the  IgA Isotype \\.ere qeilerateii to the  
miu-~ne rota\.lrus atrains EC, EHP, or E\Y 
(12) .  A "hackyack tumor" moiiel (13)  \v,is 
~ ~ c e i l  tor analysis, in ~ ~ h ~ c h  hyhriLiom,l cells 
\yere injected s l~hcuta~leoi~-IY into the upper 
1)ack o t  h~s toco~ l lpa t~h le  BALB/c m ~ c e .  A t  
the  ~ ~ l j e c t i o ~ l  hite, the n-iice secreted mAh- 
that  \yere suhseiluently tranaporteci 111 the  
c~sculatcjr\- sp t em.  If the secrrteii IgA anti- 
1 ~ x 1 ~  molecules were ol~gomeric,  they could 
be phvs~oloijically tra~-i.;cvtoseii to mucos;ll 
burface.; (1 4). 

;\lultiply cli>ne,l IeA or IyG hyl3riiioma 
cell I~nes  (Ta l~ le  1 )  reactlve n i t h  e ~ t h e r  \:P4 
or \JP6 were tr,lnaplanted 111tt> 2-nlonth-olil, 
rotaviri~c-naiw, h~rtocomp,~tible BALB/c 
mice at  a close o t  1Q6 cells per nlouce. All the 
IgA monoclonal.; were oliqomeric as mea- 
s~lreil l ) ~  ~ ~ t ~ l ~ a c r y l a ~ ~ ~ i ~ l ~  gel electri>phi>resis 
(PACE)  m ~ g r a t ~ o n  (15).  Three out of four 
IgA 111.413s to \'P4 had in \.itro ~ l e ~ ~ t r a l i z i ~ ~ g  
a c t i ~ ~ t ~  aqainst the chn l l e~~ge  viri~s (EC) ,  
~vherea.; none of the three mA1.s to \JPG 
demonstrateLl neutralir~ng acti\.ity in ~ i t r o  
(Ta l~ le  1 ) .  A high-t~ter,  e rotvye Gi-specif- 
ic, ne i~t ra l i r~nq,  anti-VP7 IgG hybriLli>ma. 
4FS, n-a.: also i n c l ~ ~ ~ l e i i  l~ecause investigators 
ha\-e reporteJ that large amounts of serum- 
neutralir~ng antii7oLli. correlate n i t h  yrotec- 
t ~ o n  against s i ~ h s e q ~ ~ e n t  rotavirus ~nfection 
(16) .  Ret~vecn 14 anii 16 days after trans- 
plantatii>n, \vhen the tlllllors \\-ere \ 1ril3le 
a~-i;i h~l7riJoma-yroiii~ceii antiboilies coul~l  
be detected In sera a1111 stool<, the haclq~acl; 
mice n.ere orall\- challe~-i~eii  with lo4  she~ l -  
J r l g  Jose 50s o t  ~ ~ i l d - t y p e  EC nlilrllle rota- 
virus (serotype G3P16),  and ila~lv stool sam- 
ples \\.ere collected as ilescril~eil (8). Control 
an~mals  anii an~malh transL7la~-itei1 1 ~ 1 t h  Ig.4 

Table 1. Specfcty and react \~ ty  of selected IgA and IgG mAbs ND !not determned 

Protein In vltro 
Resoluion 

mAb soiype Protecton n 
spec~f~c~ty  neutra~zat~otn' VI\JO.I.:I: 

In SClD 
mce.t:; 

6D10 g A  VP4 <40 0/3 0/3 
8D6 g A  VP4 40,960 014 012, 012 
4G10 VP4 2.560 0/2, 0/4 ND 
8D2 g A  VP4 10.240 0/3 0/3 
lOC l0  1 gA VP6 <20 3/3 2/2, 2/2 
7D9 IgA VP6 <20 2/2, 3/3, 5/5 3/3, 3/3 
8D3 g A  VP6 <20 0/2, 0/3 0/3, 0/2 
5 F6 IgG2b VP6 <20 0/3 N D 
4 F8 gG1 VP7 163,840 0/4 0/2 

'Ne,~traIzato.i t~te, cietermneci by foe-IS reci~~cton assay wtli EC mur?e rotav,,~s tP,otect~on and resol~~t~on 
11-ci~cate alxence of rotavlras shedcilng 3,-own below IS t,ie nurnber of protected or resolved rnlce versus the total 
nurrber tested In a scec~f~c experiment 

mhlls  to \'P4, IgG mhl is  to VP7, or IgG 
mAh.; to \'P6 were not protecteLi frc>rn chal- 
lenge (Fig. 1 A  anii Table 1).  Ho~vever,  t~ f -o  
of three IqA antihoilies to \JP6 ( i D 9  anil 
1QClQ) co~llpletely hlocked infection (Tahle 
1 anii Fi:. l A ) ,  ~vl-ierea.; one IgA mAb to 
\JP6 (8D3) hail n o  effect. Foils clo~linqs ot 
the 7D9 hy17riLloma ~11~1 nut alter ~ t s  al-itiv~ral 
acti\.itv. T h e  tv-o pob~tive a~lt~hoilies to VPG 
(7D9 a n ~ l  10ClD) Lvere 1iolateL1 from 111ile- 
l)eniient fi~sik>ns. Both i D 9  anii li?ClL? react 
e x c l ~ ~ s ~ \ . e l ~  w ~ t h  the tri~neric form of \:Ph 
(15)  and neither has detectable neutraliring 

activity in \-itso (Tahle 1).  
All an~mals  that received the i D 9  back- 

pack tumor tran\plants hail detectable 
ami>unt.; i>f IgA in their stool b\- iiay 12 (Fig. 
2); ho\vever, the amoi~nt  of IgA varied in 
differei-it ani~l-ials as previously ilescriheil (13). 
S i ~ n ~ l a r  stuilies with I g h  mAbs ti> \JP4 tiem- 
onstrateii that thebe antil3odies were also 
transpo~-teii il-ito the s~llall ~~-ite. ; t~ne h\- the 
tinle of challe~lge (15).  IgG mAhs were not 
iletecteil in feces before challe~lge (15).  The  
amount o t  I g h  antiboily in the feces at  the 
tinle of challenge (Fig. 2 )  was less than (31- 

density. Squares, 4G10 IgA rnAb to VP4: dia- 
monds. 5E6 IgG lnAb to VP6; c~rcles, 7D9 IgA 
mAb to VP6: triangles, 8D3 IgA lnAb to VP6: 
sq~~ares v!ith crosses, cotitrol, (B) Rotavrus anti- 
gen sheddng profiles from chroncaly Infected 
SCID niice bearing hybridolna backpacks. SCID 
BALB'c m c e  were chroncaly infected \!511th the 
wild-type EW strain of murlne rota\!~rus as de- 
scrbed (29). T\wo to three lnonths after becorning 
chronically infected, groups of three lnice \were 
injected \v~iih l o 6  hybridoma cells as described 
(13).  Daily stool salnpes ivere collected before 
hybridoma transpantaron on day zero and after- 
ward for 19 days. Ten percent stool suspensions 
were prepared, and aritgen shedding ivas mea- 
sured by ELSA as descrbed (8). Each point rep- 
resents the daily average of a group of three nice; 
Squares. LF8 IgG lnAb to VP7; dalnonds 6D10 IgP 

Fig. 1. (A) Rotav~rus antigen shedding profiles 1 
from BALB'c lnice bear~tig hybridolna back- 
packs Groups of three rotav~rus-na~ve BALB,c 
lnice i6 to 8 \weeks old) ~vere injected in the scruff 0.75- 

of the upper back ivith 10': hybrdoma cells Four- 
teen to s~xteen days after njectioti (day zero), all 

0.5- niice \were orally nocuated \!511th l o 2  shedding 
dose 50s of v!~ld-type EC murlne rotavirus 0 

0 
(G3P16) as previously descrbed (9). D a y  stool 
samples \were collected froln each lnouse for the 0.25- 

dclraton of the expertnent (8 days). Ten percent 
stool suspensons (iv'v) \were prepared n trs-buii- 

0- 
ered sane  [I 0 mM tris. I 0 0  mM NaCl. and 2 I ~ M  
CaCl, (pH 7 L)] containing 5 O o  fetal bovne serum, 
0.0333 T~veeli 20, 5 mlvl sodium azde, and 133 

-0.25 
0 2 4 6 8 10 12 14 15 16 17 18 19 

Days after challenge 

A 

- 0 . 2 5 ,  , 1 1 1 1 1  

error bars represent i l  SD. OD, optical dens~ty. 
, ~ n A b  to VPL: and circles. 7D9 IgA niAb to VP6. 

aprotiniri (stool duent) Rotav~rus stool antigen 0 1 2 3 4 5 6 7 8  
shedding \was measured by ELSA (8). Each point 
represents the daily average of a group of three 1 

mice: err-or bars represent 2 1  SD. OD. ogt~cal 



comparable to the amount seen after primary 
rotavirus infection, which indicates that the 
protective effect observed was not due to mas- 
sive amounts of IgA mAb to rotavirus enter- 
ing the gastrointestinal tract lumen (8, 9). 

0 2 4 6 8 10 12 14 16 18 20 22 

Days after challenge 

Fig. 2. Presence of IgA antibody in stool of mice 
transplanted with the 7D9 hybridoma. Three rota- 
virus-naive BALB/c mice were injected with lo6 
7D9 hybridoma cells as a backpack tumor on day 
zero. Stool samples were collected for 21 days, 
and 7D9 IgA amounts were determined by ELISA 
as described previously (8). Mouse number 3 died 
on day 17. Squares, mouse number 1 ; diamonds, 
mouse number 2; circles, mouse number 3; and 
triangles, control. 

Fig. 3. Electrophoretic profiles of RNA extracted 
from stool suspensions obtained from hybridoma- 
bearing BALB/c mice. RNA extraction and elec- 
trophoresis and silver staining were carried out as 
described (9). Data from one mouse carrying the 
anti-VP4 IgA hybridoma backpack and two mice 
carrying 7D9 hybridoma backpacks are shown. 
Days 2 and 4 after infection (d2 and d4) represent 
the peak of rotavirus antigen shedding in naive 
mice orally infected with wild-type murine rotavi- 
rus, as detected by ELISA. Lane EC contains RNA 
from a preparation of tissue culture-adapted EC 
murine rotavirus extracted in parallel as a control. 

To determine if antibody was capable of 
resolving ongoing infection, BALB/c mice 
with severe combined immunodeficiency 
disease (SCID) were infected as sucklings 
with wild-type EW (G3P16) murine rotavi- 
rus. These mice developed chronic rotavirus 
infection and persistently shed detectable 
amounts of viral antigen in their stool. Af- 
ter the SCID mice had been chronically 
infected for at least 2 months, hybridoma 
cell lines were transplanted subcutaneously 
into these animals (lo6 cells per mouse), 
and daily stools were assayed for the disap- 
pearance of viral antigen (Table 1 and Fig. 
1B). The animals given the 7D9 cell line 
showed no detectable antigen shedding 12 
days after cell transfer and remained free of 
virus until the experiment was terminated 8 
days later (Fig. 1B and Table 1). The SCID 
mice transplanted with the other hybrid- 
oma lines (with the exception of lOClO 
IgA mAb to VP6) continued to shed rota- 
virus (Table 1). In other studies involving 
more than 60 chronically infected SCID 
mice, we have never observed spontaneous 
resolution of rotavirus infection. 

In initial studies, we investigated the abil- 
ity of passively transferred IgA ascites to 
reduce illness in 5-day-old suckling mice. 
Intraperitoneal administration of 7D9 IgA 

The locations of the 11 genome segments are marked at the right. 

Fig. 4. Photomicrograph 
of sections of mouse 
small intestine immuno- 
stained for EC rotavirus. EC Mouse 
Approximately 1 cm of il- l@ 

eal loops were removed 
from mice after 12 hours 
of exposure to activated 
EC and to different anti- 
bodies as indicated and 
described (18). Four sec- 7D9 7D9 

tions were obtained from back- 

each end and four from pack 

the middle portion of 
each loop. A total of 12 
sections were immunostained for EC with a rabbit hyperimmune serum against rotavirus (1 : 1000 dilution), 
according to the protocol recommended by Vector Laboratories (Vectastain ABC kit, Vector Laboratories, 
Burlingame, California). Loops were inoculated with (A) EC alone, (B) EC plus mAb 7D9, (C) EC plus mouse 
IgA (irrelevant antibody), and (D) EC alone in 7D9 backpack animals (magnification, x400). Arrows indicate 
rotavirus-infected cells. All experiments carried out on animals were in accordance with National Institutes 
of Health and institutional guidelines and approved by the VA animal welfare committee. 

ascites, but not of 8D3 control antibody (100 
p.1 per day for 7 days), delayed the onset and 
shortened the duration of diarrheal illness by 
3 days in more than 50% of animals. Diar- 
rhea lasted 7 days in control mice. 

A potential confounding factor in inter- 
pretation of the passive cell transfer experi- 
ments was the possibility that the 7D9 and 
1 OClO VP6-specific mAbs were forming im- 
mune complexes with rotavirus in the intes- 
tinal lumen, thereby blocking enzyme-linked 
immunosorbent assay (ELISA) reactivity in 
the shedding assays. However, RNA gene 
segments were not detected in the stool of 
the 7D9-treated mice. whereas twical rota- 
virus double-stranded' RNA gene segments 
were apparent in the stool of mice treated 
with other hybridomas (Fig. 3). In additional 
experiments, we demonstrated that mixing 
of murine rotavirus with 7D9 ascites in vitro 
did not block our ability to detect virus by 
solid phase immunoassay ( 15). 

We next carried out a passive feeding 
study with high-titer ascites (3 X lo5 dilu- 
tion positive in ELISA) containing the 7D9 
antibody or control ascites containing a 
non-neutralizing IgG mAb to VP7 (17). 
Feeding of 100 p.1 of antibody 7D9 in ascites 
form did not alter the shedding of EC virus " 
in three mice, indicating that orally admin- 
istered mAb 7D9 to VP6 is not capable of 
inhibiting rotavirus infection (1 5). 

We used a ligated intestinal loop model 
to better characterize the site of action of 
mAb 7D9. No intestinal cell staining was 
observed when closed intestinal l o o ~ s  (18) 

L . ,  

of mice were inoculated with EC virus 
mixed with high-titer IgG neutralizing an- 
tibodies to VP4 and VP7 (15), whereas 
loops inoculated with EC virus alone, with 
EC virus mixed with 7D9 mAb, or with EC 
plus IgA myeloma (an irrelevant antibody) 
all showed staining of rotavirus-infected in- 
testinal epithelial cells (Fig. 4, A through 
C, respectively). O n  the other hand, isolat- 
ed loops of small intestine in mice carrying 
7D9 backpack tumors were fully resistant to 
primary infection with the EC strain of 
murine rotavirus (Fig. 4D) (19). Thus, IgA 
antibody was not able to inhibit primary 
rotavirus replication when directly admin- 
istered on the luminal side of the intestine. 
even at very high concentration, but was 
effective if delivered to isolated l o o ~ s  from 
the circulation. 

Our observations support the hypothesis 
that the antirotaviral effect of the non- 
neutralizing IgA mAbs is occurring during 
IgA transcytosis rather than as an extracel- 
lular event in the gut lumen. This conclu- 
sion is reinforced by the finding that trans- 
plantation of a mAb-secreting tumor that 
produced large amounts of neutralizing IgG 
antibody (4F8, Table 1) did not prevent or 
resolve rotavirus infection, presumably be- 
cause the IgG antibody did not gain access 
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to the gut l u r n e ~ ~ .  Further studies with other 
m~icosal pathogens are needed to determine 
the ge~leral applicability of this protective 
mechanism. 

The mAhs 7119 and lOClO inhibited 
replication of at least two separate ~nurine 
rotavirus strains (EC and EW; Fig. 1 ,  A and 
B) and reacted with virtually all other 
llla~lullalian strains in ELISA (15) .  Irnrnu- 
11i:ation with VP6-encodi~lg LINA has also 
heen S ~ C I L V I I  to protect mice fro111 rotavirus 
challenge in recent studies (20). If VP6- 
specific IgA antibodies with sirrlilar protec- 
tive activity are generated after natural ro- 
tavirus i~lfection or vacci~lation, they are 
likely to play a role in the heterotypic im- 
munity ohserved in a variety of vaccine 
fielil trials and epidernioli~gic studies. 
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Asymmetries Generated by 
Transcription-Coupled Repair in 

Enterobacterial Genes 
M. Pilar Francino, Lin Chao, Margaret A. Riley, 

Howard Ochman* 

Although certain replication errors occur at different frequencies on each of the com- 
plementary strands of DNA, it remains unclear whether this bias is prevalent enough 
during chromosome replication to affect sequence evolution. Here, nucleotide substitu- 
tions in enteric bacteria were examined, and no difference in mutation rates was detected 
between the leading and lagging strands, but in comparing the coding and noncoding 
strands, an excess of C+T changes was observed on the coding strand. This asymmetry 
is best explained by transcription-coupled repair on the noncoding strand. Although the 
vast majority of mutations are thought to arise from spontaneous errors during replication, 
this result implicates DNA damage as a substantial source of mutations in the wild. 

O n e  of the fundamental a s s ~ ~ ~ n p t i o ~ l s  in 
molecular evolution is that mutatio~ls are 
equally likely at any site of the genome. 
Evidence ~ndicates that the prohah~l~ty of a 
n~lcleot~de substitution may depend on po- 
sitional factors, including the LINA strand 
on  w h ~ c h  the nucleotide is located (1-4). 
Recause of the complementary and an tpa-  
rallel nature of the LINA douhle helix, each 
strand is renlicated in a verv different man- 
ner. O n  one strand, the 'leading strand, 
replicatio~l proceeds continuouslv. whereas 
on  the other strand, the lagging strand, 
replication occurs discontinuously hy the 
synthesis and joining of short Okazaki frag- 
rrlents (5) .  Several experi~nental systerns 
have revealed that the l agg i~~g  strand 1111- 
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catlo11 errors, such as ~lllsrrlatche induced 
hv an excess of deoxvthvm~dine trlnhos- , , 
phate or ideoxyguanos~ne tr~phosphate dur- 
lng in vitro repl~cation In h~11na11 cell ex- 
tracts ( 1 ,  2)  and delet~ons dur~ng  plasmid 
replication In Escher~chia coli (3,  4) .  O n  an 
evolutionary timescale, a consistent stranid- 
hias in the introduction of mutations would 
strongly affect the patterns of change in 
DNA sequences, and juch an asymmetry 
L V O L I I ~  he detected hv reconstructine the 
substitutio~ls that have occurred ;imong ho- 
rnulogous regions (6). 

Not all replication errors are equallI- fre- 
quent. The i ~ l t r o d u c t i o ~ ~  of a pyrimidine 
opposite a ternplate pI-rimidine is a very rare 
event relative to other mismatches (7); 
therefore, most tra~lsversion\, that is, muta- 
tlons from a purine (R)  to a pyrimidine ( Y )  
or vice versa arise through R:R mismatches. 
Thus, a Y-R transversion on a given 
stra~ld of LINA results from an R:R rnis- 
match introduced during the synthesis of 
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