tion of synapses elsewhere in the nervous
system of Drosophila and probably in mam-
mals as well.
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Replay of Neuronal Firing Sequences in
Rat Hippocampus During Sleep Following
Spatial Experience

William E. Skaggs and Bruce L. McNaughton

The correlated activity of rat hippocampal pyramidal cells during sleep reflects the activity
of those cells during earlier spatial exploration. Now the patterns of activity during sleep
have also been found to reflect the order in which the cells fired during spatial exploration.
This relation was reliably stronger for sleep after the behavioral session than before it; thus,
the activity during sleep reflects changes produced by experience. This memory for
temporal order of neuronal firing could be produced by an interaction between the
temporal integration properties of long-term potentiation and the phase shifting of spike
activity with respect to the hippocampal theta rhythm.

Several lines of circumstantial evidence
point to a role for the hippocampus in
memory, including numerous reports of am-
nesia or learning deficits after hippocampal
damage (1) and of the presence in several
parts of the hippocampus of a robust and
long-lasting form of Hebbian synaptic mod-
ification known as long-term potentiation
(2). Much of the data can be accounted for
by a theory postulating that the hippocam-
pus is the heart of a system capable of
storing memory traces on the basis of a
single, brief experience, after which these
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traces are ‘“consolidated” gradually into
more permanent storage in the neocortex
(3-5). A memory system of this sort would,
however, be seriously lacking if it were in-
capable of encoding information about the
order in which events occurred.

Recent studies indicate that hippocam-
pal unit activity during sleep reflects the
activity patterns that occurred during the
experience that preceded the sleep interval.
Pyramidal cells in the CA3 and CAl re-
gions of the rat hippocampus have long
been known to fire in a spatially specific
manner in a variety of behavioral para-
digms, with each cell firing when the rat is
in a particular area of the environment (6):
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Pavlides and Winson (7) found that when a
rat spends an extended period of time inside
the spatial firing field of a hippocampal
pyramidal cell, the firing rate of that cell is
increased during an immediately following
period of slow-wave sleep (SWS). More
recently, Wilson and McNaughton (8), us-
ing data recorded in parallel from groups of
50 to 100 hippocampal units, found that
pairs of cells with overlapping place fields in
an environment showed enhanced correla-
tions during SWS following a period of
food-seeking behavior in the environment.
Because much of the spike activity in the
hippocampus during SWS occurs during
“sharp waves” (9) (100- to 200-ms bursts of
activity that appear to be generated inside
the CA3 region), these results suggest that
the hippocampal synaptic matrix encodes
information about the patterns of unit ac-
tivity generated by place-related firing dur-
ing experience in an environment. Given
that the activiry patterns during sleep con-
tain information about which groups of hip-
pocampal cells fired together, it is natural to
wonder whether they also contain informa-
tion about the temporal order in which the
cells fired. We demonstrate here, using en-
semble recording methods similar to those
of Wilson and McNaughton (8), that tem-
poral order information is indeed preserved
during sleep, and a possible physiological
mechanism is outlined.

Hippocampal unit activity was recorded
from six male Fisher 344 rats by an array of
12 independently movable four-channel
“tetrodes,” each of which can pick up dis-
tinguishable action potentials from 5 to 20
pyramidal cells if the tetrode is positioned
with the electrode tips near the center of
the CAL1 cell body layer (10). Unit activity
was recorded during sleep and also as the
rats ran for food reward on one of two
apparatuses. The first was an elevated
wooden track in the shape of a triangle (Fig.
1A), with each side 75 cm long and 8 cm
wide; the second was a similar wooden
track, 7 cm wide, in the shape of an 87 cm
by 36 cm rectangle. Both apparatuses were
placed on a table in the center of a cue-
controlled recording area, with numerous
salient visual cues scattered around the pe-
riphery. The task of the rats was merely to
traverse the track repeatedly in the same
direction, stopping at two (rectangle) or
three (triangle) locations to eat a small food
reward (11). For each pair of CA1 pyrami-
dal cells in a data set, a measure of temporal
ordering was calculated on the basis of their
cross-correlation histogram. The temporal
bias By, for cells i and j was defined to be the
difference between the cross-correlation
xij(t) integrated over a 200-ms window after
time zero and the cross-correlation integrat-
ed over a 200-ms window preceding time

zero (12) (Fig. 1B).

When pairs of cells displayed strong
temporal ordering on the track, they tend-
ed in a statistically significant way to show
a bias in the same direction during sleep
that followed the track-running period,
but not during sleep that preceded the
track-running period. A particularly clear
example is illustrated in Fig. 1C for one of
the recording sessions. The central cluster
of points in each panel represents pairs of
cells having little or no overlap on the
track; these clusters show a broad scatter
of bias values during sleep both before and
after track-running. The points whose
horizontal coordinates are large, on the
other hand, represent pairs of cells with
place fields close to each other on the
track; the bulk of these show a bias in the
same direction during sleep that followed
the track-running session.

The irregular distributions in Fig. 1C do
not lend themselves very well to statistical
analysis. We used two methods to quantify
the relations. First, we calculated the corre-
lation coefficient between the horizontal
and vertical coordinates in each plot. If

there were no reproduction of temporal
bias, then the expected correlation coeffi-
cient would be zero. Because correlation
coefficients are hypersensitive to outliers,
we supplemented this analysis by comparing
the number of points in the upper right
quadrant (N, ) with the number of points
in the lower right quadrant (N, _) for each
plot. If there were no reproduction of bias,
then these numbers would be expected to
be equal. (Because the bias merely changes
sign when the order of a pair of cells is
reversed, the left quadrants contain no ex-
tra information.) Both of these methods are
independent of the scale of the axes (13).
For all seven recording sessions, the cor-
relation (Fig. 2A) during the “sleep after”
period was greater than the correlation dur-
ing the “sleep before” period. This consist-
ency is statistically significant (P < 0.01;
one-tailed sign test). The mean correlation
for the “sleep after” period was significantly
larger than zero (P < 0.05; Student’s ¢ test,
one-tailed) and significantly larger than the
correlation during the “sleep before” period
(P < 0.01; paired ¢ test, one-tailed), which
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Fig. 1. Temporal bias of cross-correlations. (A) Spatial firing fields for a pair of simultaneously recorded
CA1 pyramidal cells. The rat ran repeatedly counterclockwise along an elevated triangular track, stopping
in the center of each side to consume a small food reward. The trajectory of the rat is shown in gray, and
spikes fired by the cells are represented by small black dots. The place field of cell 1 is displaced slightly
forward with respect to the place field of cell 2. (B) Firing rate and cross-correlation plots for the two cells
in (A). (Top) Mean firing rate for each of the two cells, as a function of position on the track. The direction
of motion is from left to right. (Bottom) Cross-correlation plots derived from data recorded while the rat
slept 15 min before the track-running session (top), while the rat ran on the track (middle), and while the
rat slept 15 min after the track-running session (bottom). The temporal bias of the pair of cells is measured
by the difference in area of the light- and dark-shaded regions. Note the strong theta-frequency (~8 Hz)
modulation of the cross-correlation during the track-running session. The cross-correlation plots for
different pairs of cells during any of the three periods are highly variable; this example illustrates the overall
pattern found in the data. The bin size for these plots is 10 ms. (C) Scatterplots of temporal bias while the
rat ran on the track versus the bias during 15-min periods of sleep before and after the track-running
session. Each point represents a single pair of CA1 pyramidal cells. This figure shows data from one of the
seven recording sessions. Not all of the others showed such a salient effect, but the tendency was in all
cases in the same direction. The scales for the axes differ, but the vertical-axis scale is the same for both

plots.
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was not itself significantly different from
zero. Thus, the bias during track running
was more strongly correlated with the bias
during sleep afterward than with the bias
during sleep before.

For the “sleep after” period, all seven
sessions yielded N, , > N_ _ (Fig. 2B); this
consistency is statistically significant (P <
0.01; one-tailed sign test). For four of the
seven individual sessions, N, . was signifi-
cantly larger than N, _ (P < 0.05; one-
tailed sign test). When the data from all
seven sessions were pooled, the overall dif-
ference was highly significant (Z = 4.79, P
< 0.00001; one-tailed sign test). In con-
trast, for the “sleep before” period, none of
the individual sessions showed a significant
difference between N, and N _, and nei-
ther did the data pooled from all seven
sessions (14). Thus, a significant majority of
cell pairs showed the same direction of bias
during the maze-running session as they did
during sleep afterward; this was not the case
for sleep before.

One possible explanation of the data is
that the bias is a consequence of long-term
potentiation (LTP) occurring while the rat
runs on the track, either during the specific
recording session analyzed or cumulatively
during earlier experiences in the same en-
vironment (15). In order for this to occur,
there would need to be some mechanism to
make LTP sensitive to the order of cell
firing. Several studies have indicated that
potentiation of a synapse occurs preferen-
tially when the presynaptic cell fires simul-
taneously with or before, but not after, the
postsynaptic cell, within a window of about
40 ms (16). Thus, if two cells A and B are
reciprocally connected and the pair AB
shows a positive cross-correlation bias with
a time window of 40 ms, then the connec-
tion from A to B is likely to be strengthened
more than the connection from B to A.
Evidence (I7) indicates that when the
place fields of two cells are overlapping but
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mark sessions where N is significantly greater

offset such that the rat passes through their
centers in rapid succession, then their cross-
correlation histogram shows a theta-fre-
quency peak offset from zero in the same
direction. This offset is a consequence of
the phase shifting of spike activity with
respect to the theta cycle (17, 18) and is
illustrated by the middle (“on track”) cross-
correlation plot in Fig. 1B, where the theta-
frequency peak nearest zero is offset from
zero in the same direction as the offset of
the overall cross-correlation curve. This ef-
fect leads to a substantial enhancement of
cross-correlation bias over a time window of
approximately half the period of the theta
cycle, that is, about 60 ms.

The proposed mechanism could only
function in an area where cells are densely
interconnected. This is not true for CA1,
where the data for the present study were
recorded, but it is certainly true for CA3,
which provides the dominant input to CA1.
Pyramidal cells in CA3 have place fields and
generally behave much the same as pyrami-
dal cells in CA1. The proposal, then, is that
temporal order is recorded by LTP of asso-
ciational connections within CA3, and that
these selectively modified synapses give rise
to temporal biases during sleep, which are
then transferred to CA1 by way of the strong
Schaffer collateral projection.
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The CA1 cell body layer can be recognized by sev-
eral criteria, including the presence of 100- to 300-
Hz “ripples” in electroencephalograms recorded
from the tetrodes, “‘sharp waves” in the electroen-
cephalograms that reverse polarity about 50 um be-
low the CA1 layer, and most importantly, the sudden
appearance, at a depth about 2 mm below the dura,
of large numbers of simultaneously recorded cells
firing complex spikes [(9); J. O’Keefe, Exp. Neurol.
51, 78 (1976); G. Buzséaki, Z. Horvath, R. Urioste, J.
Hetke, K. Wise, Science 256, 1025 (1992); S. S.
Suzuki and G. K. Smith, Electroencephalogr. Clin.
Neurophysiol. 69, 541 (1987)]. The electrode arrays
were implanted stereotaxically, under pentobarbital
(Nembutal) anesthesia; all procedures were carried
out in accordance with an institutionally approved
animal care protocol. The CA1 layer was identified by
standard electrophysiological criteria, and pyramidal
cells (31 to 57 per recording session) were identified
on the basis of action-potential wave forms and in-
terspike interval histograms. To be classified as a
pyramidal cell, a unit was required (j) to fire at least a
small number of complex spike bursts during the
recording session, (i) to be recorded simultaneously
with other cells firing complex spikes, (iii) to have a
spike width (peak to valley) of at least 300 ps; and (iv)
to have an overall mean rate below 5 Hz during the
recording session [J. B. Ranck Jr., Exp. Neurol. 41,
461 (1973); S. Fox and J. B. Ranck Jr., Exp. Brain
Res. 41, 399 (1981);, G. Buzséki, L. S. Leung, C. H.
Vanderwolf, Brain Res. Rev. 6, 139 (1983)].

The rats varied in familiarity with the task, some hav-
ing been trained on the same track daily for only 6
days (but extensively trained on other, similar types
of apparatus), others having performed the same
task daily for several weeks, always at approximately
the same time of day. Three of the rats were young
adults, about 9 months old; the other three were
elderly, 27 to 30 months old. One of the young rats
was recorded from twice, on both triangle and rec-
tangle, 2 weeks apart; the other five rats were re-
corded from once each. For each recording session,
the rat was first placed on a small round platform
near the track, and unit activity was monitored until a
period of sleep lasting 30 min or more was recorded.
Next, the rat was placed on the track, where it ran for
food reward for 20 to 30 min. Finally, the rat was
retumed to the platform and recorded from for a
further 30 to 60 min of sleep. During many of the
sessions, the sleep periods were broken by brief
intervals of drowsy wakefulness or arousal, during
which place-specific firing of some units was seen on
the platform, but this activity bore no apparent rela-
tion to the activity seen on the track. From each sleep
session, a period of 15 min with minimal signs of
arousal (that is, movement and theta activity in the
EEG) was selected for analysis. It is difficult, with the
information available, to distinguish clearly between
SWS and a state of drowsy wakefulness, or between
the physiology of these two states. The design of the
study proceeded as follows. Initially, a data set with a
large number of cells was chosen for preliminary
analyses, working out the computational and statis-
tical techniques. Next, we performed the same anal-
yses on six more data sets, choosing this number
because seven out of seven is significant at the 0.01
level in a sign test, given an a priori probability of 0.5.
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The criteria were that there be a good number of
cells, good behavior on the apparatus, and at least
15 min of good sleep both before and after the be-
havioral session. These were informal criteria, but the
data sets were chosen before any analyses were
performed on them. The data were taken from ani-
mals involved in a variety of experiments, including,
for example, a study of the effects of aging on rat
hippocampal activity. Every data set that was ana-
lyzed is presented in this report.

. The value of the *‘cross-correlation” function x,(t),

as used here, was equal to the number of pairs of
spikes, one from cell i and the other from cell j, that
were separated by an interspike interval in the range
(t,t + At), where At is the bin size. The measure of
temporal asymmetry used here is, however, inde-
pendent of the bin size, so long as it is small. The
measure of temporal asymmetry was

200 0
B, = f xyt)at — f xiddt M
0 -200

B; measures the difference between the number of
events in which a spike from cell / was followed within
200 ms by a spike from cell j and the number of events
in which a spike from cell j was followed within 200 ms
by a spike from cell i, possibly with other spikes of either
cellin between. Note that B,, = HB,.,., This reversal of sign
as a consequence of exchanging the cells makes the
temporal bias measure quite different from a simple
correlation measure of the type used by Wilson and
McNaughton (8), which kesps the same value if the two
cells are exchanged. To minimize the possibility of arti-
facts caused by shrinkage of spike amplitude when a
cellis highly active, we used only pairs of cells recorded
from different tetrodes in the analyses.

Our main concern in this study was to establish the
reality of the phenomenon in as straightforward a
way as possible. Therefore, we thought it preferable
to avoid any manipulations of the data that were not
absolutely necessary, such as rescaling or thresh-
olding. It is likely that the relations reported here
would be stronger if, for example, only pairs of cells
with overlapping place fields were included.

. As mentioned previously, we calculated the temporal

bias in these analyses using a time window of =200 ms.
We also experimented with time windows of 50, 100,
500, and 1000 ms. Significant effects could be seen for
some of the recording sessions with time windows of
100 and 500 ms, but they appeared to be less consis-
tent. We also experimented with different time windows
for the sleep and track-running sessions, but again, time
windows of 200 ms for both yielded the most consistent
evidence for reproduction of temporal bias. During track
running, a time window of 200 ms captures the relation
of most pairs of cells with overlapping place fields but
yields zero for most pairs whose fields are more widely
separated; during sleep, a time window of 200 ms cap-
tures relations that occur within individual sharp waves
but rarely encompasses two consecutive sharp waves.
Buzséki (5) suggested that behavioral sequences may
be compressed into the time window of individual sharp
waves, and Skaggs et al. (17) have shown evidence
that sequences are compressed within individual theta
cycles.

Long-term potentiation in the rat hippocampus is
thought to have a duration of days to weeks [(2); C. A.
Barnes, J. Comp. Physiol. Psychol. 931, 74 (1979)].
Why, then, would temporal bias be reproduced prefer-
entially during sleep after behavior in a familiar environ-
ment? One possibility is that the effects are the result of
the early, decremental component of LTP, known as
short-term potentiation, which has a time course of 5 to
40 min [R. Malenka, Neuron 6, 53 (1991); A. Colino,
Y.-Y. Huang, R. C. Malenka, J. Neurosci. 12, 180
(1992)]. Another theoretical possibility, which remains to
be explored, is that the observed pattern of temporal
bias results from a combination of long-lasting tempo-
rally asymmetric LTP with a short-lasting postbehavioral
enhancement of the activity level of individual units, as
observed by Pavlides and Winson (7). However, no
such enhancement in activity was observable in our
data; this discrepancy may be because Paviides and
Winson obtained their results by confining each rat in-
side the place field of each cell for an extended period of
time.
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An RNA Polymerase |l Elongation Factor
Encoded by the Human ELL Gene

Ali Shilatifard, William S. Lane, Kenneth W. Jackson,
Ronald C. Conaway, Joan W. Conaway*

The human ELL gene on chromosome 19 undergoes frequent translocations with the
trithorax-like MLL gene on chromosome 11 in acute myeloid leukemias. Here, ELL was
shown to encode a previously uncharacterized elongation factor that can increase the
catalytic rate of RNA polymerase [l transcription by suppressing transient pausing by
polymerase at multiple sites along the DNA. Functionally, ELL resembles Elongin (Slil), a
transcription elongation factor regulated by the product of the von Hippel-Lindau (VHL)
tumor suppressor gene. The discovery of a second elongation factor implicated in on-
cogenesis provides further support for a close connection between the regulation of

transcription elongation and cell growth.

The identification of genes at breakpoints of
frequently occurring chromosomal transloca-
tions has led to the discovery of cellular pro-
teins that are involved in oncogenesis. The
fact that many of these proteins are transcrip-
tion factors illustrates the critical role of tran-
scriptional deregulation in human cancer (I,
2). One form -of acute myeloid leukemia re-
sults from a t(11;19)(q23;p13.1) translocation
between the ELL gene (also called MEN) on
chromosome 19 and the MLL gene (also
called Htrx, ALL-1, and HRX) on chromo-
some 11 (3). The predicted open reading
frame (ORF) of the human ELL gene provides
few clues to its role in either normal cell
growth or leukemogenesis; the ELL gene en-
codes a basic, 621-amino acid protein that is
ubiquitously expressed and highly conserved
throughout evolution but exhibits no obvious
homology to known proteins (3). The MLL
gene encodes a 3968-amino acid protein; the
NH,-terminal regions of MLL are similar to
A-T hook DNA-binding and methyltrans-
ferase-like domains, and the COOH-terminal
region of MLL is similar to that encoded by
the Drosophila gene trithorax with a transcrip-
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tional activation domain downstream of sev-
eral contiguous zinc fingers (4, 5). The puta-
tive oncogene generated by the t(11;19)
translocation encodes an NH,-MLL-ELL-
COQOH fusion protein that contains nearly
the entire ELL ORF and the NH,-terminal
1300 amino acids of MLL, including its A-T
hook and methyltransferase-like domains but
lacking its COOH-terminal transcriptional
activation domain and zinc fingers (3).
Recently, we purified an RNA polymer-
ase I transcription factor from rat liver
nuclear extracts by means of the procedure
outlined in Fig. 1A (6). During purification,
this factor was assayed by its ability to stim-
ulate the rate of accumulation of 135-nucle-
otide (nt) transcripts synthesized by RNA
polymerase Il on the T-less cassette of the
oligo(dC)-tailed template pCpGR220 S/P/X
(7, 8). Analysis by SDS-polyacrylamide gel
electrophoresis (PAGE) of fractions from the
final PLRP-S reversed-phase high-perfor-
mance liquid chromatography (rpHPLC)
column revealed that transcriptional activity
copurified with a single ~80-kD polypeptide
(p80) (Fig. 1B), which stimulates transcrip-
tion by RNA polymerase Il in a dose-depen-
dent manner (Fig. 1C). Results of pulse-
chase experiments indicated that the factor
is capable of stimulating the rate of elonga-
tion of promoter-specific: transcripts synthe-
sized by RNA polymerase II. Transcription
was initiated at the adenovirus 2 major late
(AdML) promoter by addition of adenosine
triphosphate (ATP), guanosine triphosphate
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