
the  abundance of per transcripts. 

L ~ g h t  pulses rapldly induce expressio~l of 
the Neurosporn clock gene freqttenc! (frq) 
(29).  Although frq protein was not  assayed, 
these results suggest that the  regulation of 
frq transcription is the  initial clock compo- 
nent modulated hy photic stlinuli. f-Ionlev- 
er, in  Drosophila the ilnltlal clock-specif~c 
photoresponsi\~e event is likely to be the 
degradation of TIM (28) and the  dlsruptioll 
of the PER-TIM complex. Indeed, circad~ail  
fluctuations in  both the  abundance of PER 
and behavior call he generated from a pre- 
sumahly n o ~ ~ c y c l i n g  per transcript (30). To-  
gether, these observations suggest that gost- 
trallslational autoregulatory loops ( in  addi- 
ti011 to  the possible c o n t r l b ~ ~ t i o n  of the per 
and tim trallscriptlonal feedback loop) (1 1 ,  
16)  might part~cipate in generatire the  PER 
and T I M  bioche~nlcal oscillations. 
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Abnormal Centrosome Amplification in the 
Absence of p53 

Kenji Fukasawa, Taesaeng Choi, Ryoko Kuriyama, 
Shen Rulong, George F. Vande Woude* 

The centrosome plays a vital role in mitotic fidelity, ensuring establishment of bipolar 
spindles and balanced chromosome segregation. Centrosome duplication occurs only 
once during the cell cycle and is therefore highly regulated. Here, it is shown that in mouse 
embryonic fibroblasts (MEFs) lacking the p53 tumor suppressor protein, multiple copies 
of functionally competent centrosomes are generated during a single cell cycle. In con- 
trast, MEFs prepared from normal mice or mice deficient in the retinoblastoma tumor 
suppressor gene product do not display these abnormalities. The abnormally amplified 
centrosomes profoundly affect mitotic fidelity, resulting in unequal segregation of chro- 
mosomes. These observations implicate p53 in the regulation of centrosome duplication 
and suggest one possible mechanism by which the loss of p53 may cause genetic 
instability. 

T h e  celltrosolne 1s a major m~crotubule- 
organirlng center 111 eukaryotlc cells and 
features prominently in mitosis, where it is 
required for the  establishment of spindle 
bipolarity, spindle microtubule assembly, 
the estahlishlnent of the  cleavage f~lrroa. 
plane, and balanced segregation of chroma- 
solnes (1 ). In  addition, during interphase it 

~lucleates and organizes the  cytoplasmic 1n1- 

c ro tub~~les ,  which leads to  the  redistrihut~on 
of cellular organelles and the  establishment 
of cellular polarity ( 1 ) .  T h e  centrosoine 
duplicates only once during each cell cycle; 
duplicatioln begins near the GI-S boundary, 
when replication of the centriole ( the  core 
co~nponen t  of centrosorne) commences, 
and 1s c o m ~ l e t e d  111 G, 12). ' ,  

K. F u k a s a ~ ~ ~ a  T Cho~,  S Ruong, G F. Vande Woude, T h e  p53 tumor suppressor gene is fre- 
ABL-Basc Research Program, Natona Cancer nstltute, q~lelltly mutated in  hulnan and rodent tu- 
Frederlck Cancer Researcti and Development Center, nlclrs (3,  4), all,j its loss or inactivation is 
Pos: Offlce Box B Frederlck. MD 21 702-1 201. USA. 
P Kurlvama, Depafllnent of Cell Bloosvand Neuroanat coyelated wit11 . genetic . instability (5 ) .  T h e  
om", unverstv of Mnnesota M e d c a - ~ c t i o o  Mnneap- 053 proteill has been silown to associate . - 011s MN 5545S USA with the  centrosome during interphase, hut 
"To int ti om correspondence should be adressed not during mitosis (6 ) .  To ~nvestigate 
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whether the loss of p53 affects centrosome 
behavior, we studied primary MEFs derived 
from p53-deficient (p53-1-) mice (7). We 
identified centrosomes by immunostaining 
wi th an antibody to y-tubulin (anti-y-tu- 
bulin), a well-characterized component of 
centrosomes (8) in all phases of the cell 
cycle. The microtubule-nucleating activity 
of centrosomes was examined by immuno- 
staining with an antibody to P-tubulin. 

We compared the centrosomes of 
p53+1+ and p53-1- MEFs at the second cell 
passage. Control p53+1+ MEFs at inter- 
phase contained one or two centrosomes 
juxtaposed to the nucleus (Fig. 1, A and A', 
and Table l ) ,  and at mitosis >97% of the 
cells displayed a typical bipolar array of 
antiparallel microtubules organized by two 
centrosomes at the poles (Fig. 1, B to E, B' 
to E', and Table 1). In contrast, >30% of 
the p53-1- MEFs at interphase contained 
more than two centrosomes (3 to 10 per 
cell) (Fig. 2, A to A ,  and Table I ) ,  and at 
mitosis >50% of the p53-1- MEFs con- 
tained spindles organized by multiple spin- 
dle poles (Fig. 2 and Table 1). The abnor- 

Fig. 1. Staining of y-tubulin in p53+/+ MEFs during interphase and mitosis. p53+/+ MEFs were immu- 
nostained with antiy-tubulin. Antibody-antigen complexes were detected with fluorescein isothiocya- 
nate (FITC)-conjugated antibody to rabbit immunoglobulin G (IgG) (green). Cells were also stained with 
4',6'-diamidino-2-phenylindole (DAPI) for visualization of DNA (blue) (25). (A and A') Interphase; (B and 
B') metaphase; (C and C') anaphase; (D and D') telophase; (E and E') cytokinesis. (A) through (E), 
y-tubulin staining; (A') through (E'), DAPl staining. Scale bar, 10 pm. 

Fig. 2. Abnormal amplification of centrosomes in the absence of p53. 
p53-/- MEFs were immunostained with anti-y-tubulin and anti-p-tubulin. 
Antibody-antigen complexes were detected with FITC-conjugated anti- 
rabbit IgG (for y-tubulin, green) and rhodamine-conjugated anti-mouse IgG 
(for p-tubulin, red). Cells were also stained with DAPl for DNA dye (blue) 
(25). (A to A )  Interphase; (B to B )  prophase; (C to C", D to D", E to E", F 
to F )  metaphase; (G to G", H to H") anaphase; (I to I", J to J") telophase 
(cytokinesis). (A) to (I), y-tubulin staining; (A') to (It), p-tubulin staining; ( A )  to 

(I"), DAPl staining. Arrows in (G) and (G') indicate the centrosome localizing 
outside of the spindles formed in a bipolar fashion, and an arrow in (G") 
indicates the corresponding chromosomes that failed to partition. Panel (H") 
shows an unbalanced segregation of chromosomes; about twofold more 
chromosomes segregated to one pole (indicated by a large arrow) than 
those to the other two poles (indicated by small arrows). In panels (I) and (J), 
centrosomes that have been inherited in the daughter cells are indicated by 
arrows. Scale bar, 10 pm. 
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mally amplified centrosomes retained mi- 
crotubule-nucleating activity (Fig. 2, B' to 
J ' )  and localized to the bipolar axis in 
>90% of the cells in metaphase (Fig. 2C). 
This characteristic is most likelv resvonsible , L 

for balanced chrolnosome segregation in 
most of the cells ~v i th  multiple copies of 
centrosomes and generation of viable 
daughter cells (Fig. 2, I to I"). Much less 
frequently, three daughter cells were gener- 
ated (Fig. 2,  J to J") when tripolar spindles 
were formed (Fig. 2,  D to D ) .  T o  test 
whether the centrosome abnormalities are a 
common property of cells that have lost 
their tumor suppressor genes, we examined 
MEFs obtained from mice deficient in the 
retinoblastonla susceptibility gene (Rb)  (9).  
K O  differences in the centrosome number 
in RBP'- and RBp/+ MEFs were observed 
(Table I ) ,  indicating that the abnormal 
centrosome a~nplification is specific to the 
p 5 3 - /  MEFs. W e  cannot exclude the pos- 
sibility that other tumor suppressor gene or 
oncogene products may influence centro- 
some behavior. 

In some cells, the presence of multiple 
centrosomes in the mitotic svil~dles had 
profound effects on chromosome segrega- 
tion; the chrolnosornes did not partition 
during anaphase because they were cap- 
tured by astral microtubules of one centro- 
some (or a few centrosornes) localized out- 
side of the poles (Fig. 2, G to G", indicated 
by arrows). In other cells, there was an 

Table 1. Abnormal amplification of centrosomes 
in the absence of p53. The number of centro- 
somes was determined by immunostaining with 
anti-y-tubulin 123). For each cell lineage, we ex- 
amined more than 500 interphase cels and more 
than 200 mitotic cells. ND,  not determined. 

Percentage of cell population 
with the 

indicated number (n) of 
centrosomes 

Cell lineage+ 
Interphase Mitosis 

n = l  n  n n 
or2 2 3  = 2  2 3  

;-For all cell Ineages except for T65' p53-'- lviEFs (pas- 
sage 20), passage 2 ce:s were examineo. ?In most 
~53~'' cells as well as RBt-  ano RB-' -  cells w~ th  
abnorlnal centrosome ampif~caton, n = 3 or 4, In the 
p 5 3  cells, I: ranged from 3 to -10. 

unequal distribution of chromosomes to 
daughter cells (Fig. 2H"; see the legend to 
Fig. I ) ,  perhaps caused by unequal nulnbers 
of centrosomes and the resultant differences 
in the mitotic force exerted at each soindle 
pole. When large numbers of centrosomes 
failed to localize at the poles in a bipolar 
fashion, the proper spindle apparatus did 
not form (Fig. 2, E to E and F to F"). These 
cells did not vroceed further in mitosis and 
were eliminated during cell passage (1 0). 

Quantitative analyses revealed that the 
abnormal amplification of centrosomes de- 
tected during interphase in p53-lf MEFs 
was -2% versus -33% in p53-/- cells and 
-50% in p53-/- cells in mitosis (Table 1).  
However, there was no apparent increase in 
centrosome number in earlv- versus late- 
passage cells (Table I ) ,  suggesting that 
there is a p53-independent selection against 
cells n-ith more than three centrosomes. 
Thus, p53 loss may also deregulate the cen- 
trosome duplication itself. 

T o  test this possibility, n.e cultured 
p53f1-- and p 5 3 - '  MEFs (passage 2) for 60 
hours with a minimal amount of serum (1 I ) 
(serum-starved cells) and then ser~u~l~-stim- 

Number of centrosomes per cell 

Fig. 3. Deregulation of the centrosome duplication 
cycle in the absence of p53. p53+++ and p53-'- 
MEFs were serum-stawed for 60 hours (A and C), 
and then serum-stimulated for 15 hours (I3 and D). 
Cells treated in the same manner in parallel were 
analyzed by both f lo\~ cytometry and BrdU incor- 
poration during the period of serum stimulation. 
These analyses showed that in both p53+'+ and 
p53-/- MEFs, approximately 10°% of cell popua- 
tion entered S phase ( 1  1 ) .  Cells before and after 
serum stimulation were immunostained \~i th anti- 
y-tubulin and then stained \~i th DAPI. The number 
of centrosomes per cell in more than 1000 cells 
was determined by fluorescence microscopy. 

ulated the cells for 15 hours, Analvs~s bv 
flow cytolnetry and by 5'-bromo:2'-de: 
oxyuridine (BrdL) incorporatioll showed 
that -10% of the total cell population 
entered S phase during the period of serum 
stimulation in both p53--/+ and p53-'- 
MEFs (1 1 ). Cells \%,ere stained with anti-y- 
tubulin, and the nulnber of centrosolnes per 
cell was deterlnined before and after serum 
was added (Fig. 3) .  Under serum-starved 
conditions, both p53--/-'- and p53-I- MEFs 
were cell cycle-arrested with DNA content 
that corresponded to G, or G, (1 I ) .  HOLIJ- 
ever, whereas nearlv 100% of o 5 3 ' - -  MEFs 
contained one centrosome (Fig. 3A) ,  
-50% of the 1153-/- MEFs had one centro- 
some, -35% had two, and the reminder 
had more than two (Fle. 3C).  The serum- - 
starved cells with multiple centrosornes 
most likely inherited the centrosomes from 
a previous cell division (Fig. 2, I and J )  or 
stopped dividing because of spindle abnor- 
malities (Fig. 2,  E and F). After serum stim- 
ulation, the n~lmber of p53+1+ MEFs with 
one centrosome declined by only -10% 
(Fig. 3B), consistent with cell cycle analysis 
(1 1 ) and previous st~tdies showing that cen- 
trosome duplication begins near the GI-S 
transition (2 ) .  In contrast, the number of 
p 5 3 - '  h1EFs with one centrosome de- 
clined by -40% (Fig. 3, C and D). Thus, 
after serum stimulation, centrosome arnvli- 
fication was observed in -80% of the se- 
rum-starved p53-/- MEF population with 
one centrosome, although only 10% of the 
cells entered S vhase (1 1 ). These results 
suggest that centrosolne duplication may be 
initiated much earlier in the cell cvcle in 
the absence of p53. 

'We also observed a substantial increase in 
the nurnber of p 5 3 - '  MEFs wit11 five or 
more centrosomes after serum stimulation 
(from 6 to 21.8% of the total cell popula- 
tion) (Fig. 3D). Given that the centrosome 
duplicates only once per cell cycle, the cells 
initially must have had three or more cen- 
trosomes in order to have five or more cen- 
trosomes after one cycle of centrosome rep- 
lication. However, onlv 16.8% of the cell 
population contained three or more centro- 
sonles under serum-starved condit~ons (Fig. 
3C) ,  suggesting that in the absence of p53, 
centrosome duplication may be initiated 
multiple times during a single cell cycle. By 
electron lnicroscopy analysis, more than two 
centrioles were detected in individual cells, 
suggesting that the multiple centrosolnes 
contained centrioles (12). We also found 
that all of the centrosomes were readily de- 
tected bv an antibodv to another centroso- 
ma1 protein, pericentiin (13), and were ca- 
pable of nucleating microtubules and of 
forming spindle poles (Fig. 2),  suggesting 
that they arose through abnormal replica- 
tion. However, it is possible that they are 
also generated by centrosome destabilization. 
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The p53 protein has heen implicated in 
cell cycle checkpoints (cell cycle arrest and 
cell death) at G, -S (14) in response to DNA 
darnage (15) or inappropriate oncogene ex- 
pression (16), and at G2-M (17), especially 
in response to microtubule poisons (18). Our 
observations raise the voss~bilitv that n i 3  
may exert ~ t s  checkpoil~t functions throug11 
the regulation of centrosollle duvlication. 

u 

Multiple centrioles have been observed pre- 
viouslv in nancreatic acinar cells hv SV413 T , 

antigen in Inice (19). Our stud~es suggest 
that the multiple centrioles may arlse 
through loss of p53 funct~on lnedlated by the 
SV413 T antigen. 111 solllatic cells, centro- 
some duplication requires the ~lucleus (or 
~luclear events) (20) and is colltrolled by the 
tra~lscrintlo~lal activation of centrosome-sne- 
cific genes at specific tllnes in the cell cycle 
(21 ). Thus, conceivably;, p53 has the poten- 
tial to mediate its checkpoint fu~lctlons as a 
transcription factor; p53 activates transcrip- 
tion of certain genes through binding to 053 
resvonse DNA elements ( 2 2 )  or revresses 
tra~lscription of many; genes lacking pS3 re- 
suonse elements ( 2 3 ) .  However, u i 3  has 
been shorvn to be physically associated with 
centrosomes (6), raising the possibil~ty that 
it may directly influence centrosome actlvi- 
ty. We propose that p53 actively part~cipates 
in ~nalntaining the stabil~ty of the genollle 
through regulatio~~ of centrosome duplica- 
tion or as a monitor that limits centrosolne 
overproduction. 
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