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A rapid succession of interphase and mi­
totic states characterizes the early embryon­
ic divisions of many species. The onset of 
mitosis is induced by activation of MPF, a 
highly conserved complex consisting of a 
kinase, p34cdc2, and an activating subunit 
(cyclin Bl or B2) (1). The transition into 
interphase is accompanied by the destruc-
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tion of MPF by ubiquitin-mediated proteol­
ysis of the cyclin component (2, 3). Cyclin 
B synthesis plays a pivotal role in the cell 
cycle. It is the only protein whose synthesis 
is required to induce complete cycles of 
activation and inactivation of MPF in Xe-
nopus (4). As cyclin accumulates and binds 
to p34cclc2, a series of posttranslational mod­
ifications of the complex precede the acti­
vation of MPF. These reactions help to set 
the timing of the onset of mitosis (5). 
When p34cdc2 is fully activated by cyclin B, 
it induces cyclin degradation, whereas when 
it is activated by cyclin A, it does not (6, 
7). Activation of the cyclin degradation 
pathway is required to complete mitosis and 
to allow separation of sister chromatids at 
anaphase (8). 

The biochemical oscillations of the Xe-
nopus embryonic cell cycle can be repro­
duced in cytoplasmic extracts from fertilized 
eggs (4). Neither DNA synthesis nor mitot­
ic spindle assembly is required for the cycles 
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Cell cycle progression in cycling Xenopus egg extracts is accompanied by fluctuations 
in the concentration of adenosine 3',5'-monophosphate (cAMP) and in the activity of the 
cAMP-dependent protein kinase (PKA). The concentration of cAMP and the activity of 
PKA decrease at the onset of mitosis and increase at the transition between mitosis and 
interphase. Blocking the activation of PKA at metaphase prevented the transition into 
interphase; the activity of M phase-promoting factor (MPF; the cyclin B-p34cdc2 complex) 
remained high, and mitotic cyclins were not degraded. The arrest in mitosis was reversed 
by the reactivation of PKA. The inhibition of protein synthesis prevented the accumulation 
of cyclin and the oscillations of MPF, PKA, and cAMP. Addition of recombinant nonde-
gradable cyclin B activated p34cdc2 and PKA and induced the degradation of full-length 
cyclin B. Addition of cyclin A activated p34cdc2 but not PKA, nor did it induce the 
degradation of full-length cyclin B. These findings suggest that cyclin degradation and exit 
from mitosis require MPF-dependent activation of the cAMP-PKA pathway. 



of MPF activation and inactivation in early 
frog embryos, which indicates that these 
biochemical oscillations are independent of 
the feedback controls that can affect cell 
cycle progression (9). The activity of PKA 
oscillates during the cell cycle of cycling 
Xenopus egg extracts (10); it is greatest at 
the transition from mitosis to interphase 
and is at a minimum at the onset of mitosis. 
Oscillations in the activity of PKA should 
reflect cycles of association and dissociation 
of PKA holoenzyme induced by variations 
in the concentration of intracellular cAMP 
(1 1 ), but regulation through the PKA in- 

hibitor polypeptide PKI cannot be excluded 
(12). 

We measured the concentration of cAMP 
and the activity of PKA during the cell cycle 
of cycling Xenopw egg extracts (Fig. 1) (1 3). 
We also monitored oscillations between inter- 
phase and mitosis by assaying the histone H1 
kinase activity of MPF (4). MPF activity 
peaked when the cell cycle reached meta- 
phase, abruptly declined at telophase, re- 
mained low during interphase, and rose again 
at entry into the next mitosis. A decrease in 
the concentration of cAMP and in the activ- 
ity of PKA marked the onset of mitosis (0 to 

Fig. 1. Oscillations in CAMP concentration and PKA 4 
activity during the cell cycle. Kinase activity and 
cAMP concentration are shown as a function of the 
length of incubation of a cycling extract at 23°C. (0) 
Histone HI kinase activity of MPF (picomoles of 
phosphate transferred from ATP to histone HI per 
minute per 1 kI of extract at 30°C) (4). (A) PKA 
activity (picomoles of phosphate transferred from 
ATP to Kemptide per minute per 0.5 pI of extract at 5 
30°C) (13). (A) PKA activity in the presence of PKI 5 
(20 pM). (@) cAMP (picomoles per 15 p1 of extract) 
(13). The cAMP amounts shown are the average of 
duplicate samples in which variability was within 
12%. The oscillation patterns of MPF, PKA, and 1 

cAMP were reproducible in six independent exper- 
iments in which six independently prepared extracts 
were assayed, although the precise time of appear- 
ance of the peaks was extract-dependent. The ac- 0 
tivity of PKA that oscillated during the cell cycle did 10 30 50 70 90 110 130 

not exceed 10% of total PKA activity in the extracts Time (min) 

when it was measured at saturating concentrations of cAMP in the assay reaction mixture (10, 13). 

40 rnin in the first cell cycle and 70 to 110 
rnin in the second cycle). At metaphase, 
cAMP concentration and PKA activity rose 
and reached a maximum at the beginning of 
interphase (60 to 70 min); they fell again at 
the onset of the next mitosis (80 to 110 min). 

Activation of the ubiquitin-mediated 
cyclin degradation pathway is required for 
complete mitosis (2, 8). Although in- 
creased activity of MPF at metaphase is a 
prerequisite for cyclin degradation, the sig- 
nal that initiates it is not known (6). We 
investigated whether the activation of the 
CAMP-PKA pathway at the transition from 
mitosis to interphase was required for the 
destruction of MPF. We blocked the in- 
crease of PKA activity at metaphase and 
monitored the progression of the cell cycle. 
We added recombinant rat PKA regulatory 
subunit type I1 P in the form of a glutathi- 
one-S-transferase (GST) fusion protein 
(GST-RII) (14) to a cycling egg extract. 
This fusion protein acts as a fully functional 
PKA regulatory subunit that binds the cat- 
alytic subunit and releases it upon cAMP 
addition (15). Addition of GST-RII after 
30 rnin of incubation at 23OC arrested the 
cell cycle in mitosis in a dose-dependent 
manner (Fig. 2). Increasing amounts of 
GST-RII prolonged the inhibition of PKA 
activity and mitotic arrest (Fig. 2, B to D). 
The amount of GST-RII did not decrease 
during incubation, which excluded the pos- 
sibility that GST-RII might stabilize cyclin 
B by competing for ubiquitin-mediated pro- 
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1(30 pglml) 

GST-RII 
1 CI pgJm1) 

GST-RII 

Time (min) 

GST-RII 
1(30 pg/ml) 

- - - v p ! ~ w  -69 - - n ~ m r s r n r r a l m - 6 9  ---s 
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Fig. 2. Mitotic arrest induced by inhibition of PKA. Portions of a cycling presence of PKI (0, A, and A, respectively; units as in Fig. 1) (upper panels) or 
extract, containing [35S]methionine (400 pCi/ml), were incubated at 23°C. separated on a 12% polyacrylamide gel (lower panels). An autoradiograph of 
After 30 rnin of incubation, the following additions were made per milliliter of the gel shows the labeled proteins synthesized in the extract during the cell 
extract (5% of extract volume), and incubation was continued: (A) GST protein cycle; the positions of cyclin Bare indicated. The addition of GSTalone had no 
(30 kg); (B) GST-RII (7 kg); (C) GST-RII (15 kg); and (D) GST-RII (30 pg). From effect on the cell cycle. The duration of arrest for a given GST-RII concentra- 
20 to 90 min of incubation, samples were withdrawn at 10-min intervals and tion varied among extracts. Molecular size markers at 69 and 46 kD are 
assayed for histone HI kinase activity, PKA activity, and PKA activity in the shown. 
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teolysis (16). T h e  eventual exi t  f rom mito- 
sis in extracts treated w i t h  GST-RI I  may 
result f rom the accumulation o f  endog- 
enously synthesized c A M P  t o  a concentra- 
t i on  capable o f  dissociating the P K A  ho- 
loenzyme. T h e  GST-RII-induced arrest was 
reversed when P K A  holoenzyme was disso- 
ciated by  addition o f  c A M P  (Fig. 3). M i to t -  

i c  arrest was induced for 20 rn in  w i t h  GST- 
RII (Fig. 3, A and B), and c A M P  (250 n M )  
was added after 50 rnin (Fig. 3C) or 60 rn in  
(Fig. 3D). An increase in the activity o f  
PKA, a loss o f  cyclin B, and a drop in the 
histone H1 kinase activity o f  MPF immedi- 
ately ensued (Fig. 3, C and D). 

Cyc l in  B, but n o t  the less abundant cy- 

c l i n  A, was visible o n  SDS gels o f  portions 
o f  extracts continuously labeled w i t h  
[35S]methionine (Figs. 2 and 3) (4). During 
the cell cycle, cycl in A-associated p34'dc2 
kinase is activated earlier than is MPF, and 
cyclin A is degraded before cycl in B (1 7). 
Hence, we investigated whether cycl in A 
degradation also depended o n  PKA. T o  vi-  

0.0 20 30 40 50 60 70 80 90 
O . O l - - - - -  0.0 

20 30 40 50 60 70 80 90 20 I---- 30 40 50 60 70 80 90 0.0 20 30 40 50 60 70 80 90 

Time (rnin) 
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Fig. 3. Reversal of mitotic arrest by reactivation of PKA in extracts treated with GST-RII. Portions of a E F G 
v cycling extract, containing [35S]methionine (400 pCi/ml), were ~ncubated at 23°C. The following addi- 

tions were then made: (A) GST at 30 rnin (1 5 pg/ml); (B) GST-RII at 30 rnin (1 5 kg/ml); (C) GST-RII at 30 
69- 

rnin (1 5 kglml), cAMP at 50 rnin (250 nM); and (D) GST-RII at 30 rnin (1 5 p.g/ml), cAMP at 60 min (250 CYC *- . 
46- 

nM). Upper panels: histone H1 kinase activity, PKA act~vity, and PKA activ~ty in the presence of PKI (3, 50 60 70 80 50 60 70 80 50 60 70 80 
A, and A, respectively; units as in Fig. 1 ) as a function of incubation time. We observed similar patterns 
of histone H I  kinase activity of MPF purified on pl3-Sepharose from treated extracts. Lower panels: Time (min) 

autoradiograph of the labeled proteins synthesized in the extract at the corresponding t~me points; the positions of cyclin B are indicated. (E to G) 
Autoradlographs of [3?3]methionine-labeled proteins immunoprecipitated with an antibody to Xenopus cyclin A from extracts to which the following additions 
were made: (E) GST at 30 rnin (30 pglml); (F) GST-RII at 30 rnin (30 pg/ml); and (G) GST-RII at 30 min (30 p.g/ml) and cAMP at 60 min (400 nM). The position 
of cyclin A is indicated. The control portion (E) had the peaks of histone HI kinase actlvity and cyclin B concentration at 60 min. 

Fig. 4. Prevention of the 
activation of MPF and PKA 4 

A B C D 
+CHX+A9O Cyc B 

by inhibition of protein syn- 
thesis, and stimulation of 6 6 
the CAMP-PKA pathway af- 3 
ter MPF reactivation. (A) His- 
tone H1 kinase activity - 4 4 
and PKA activity (0 and A. % 2 respectively; units as in Fig. 
1) in an incubated cycling 
extract. (B) Histone H1 ki- 2 2 
nase activity (0 )  and PKA 
activity (A) in an extract, de- 
rived from the same eggs 0 0 
as in (A), prepared and in- 10 30 50 70 90 10 30 50 70 90 60 70 80 90 100110 60 70 80 9 0 1 0 0 1 1 0  
cubated in the presence of 
cycloheximide (CHX). (C) A 

Time (rnin) 

portion of CHX-treated extract was incubated for 60 rnin at 23°C. Histone the same quantities as in (C) were assayed during further incubation 
H1 kinase activity, PKA activity, and PKA activity in the presence of PKI at 23°C. The kinetics and extent of histone H1 kinase activation 
(0 ,  A, and A, respectively; units as in Fig. 1) were assayed during further were comparable to those previously observed under similar conditions (5). 
incubation at 23"C, as was cAMP concentration (picomoles per 30 pI Error bars in the cAMP concentration curves indicate the variability with- 
of extract; .). (D) A portion of CHX-treated extract was incubated for 60 in triplicate samples. The data are representative of three independent 
min at 23°C; then, sea urchin A90 cyclin B1 (15 pg/ml) was added, and experiments. 
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sualize cyclin A, we immunoprecipitated 
proteins from [35S]methionine-labeled ex- 
tracts with an antibody to Xenopw cyclin A 
(17). Cyclin A was apparent after 50 rnin of 
incubation, became less abundant when the 
cell cycle reached metaphase at 60 min, and 
disappeared by 70 rnin (Fig. 3E; this extract 
had cell cycle kinetics comparable to those 
of the extract shown in Fig. 2A). Addition 
of GST-RII to the extract after 30 rnin of 
incubation inhibited the degradation of cy- 
clin A during the next 80 rnin of incubation 
(Fig. 3F). Addition of CAMP, 30 rnin after 
the addition of GST-RII, overcame the ef- 
fect of GST-RII and destabilized cyclin A 
(Fig. 3G). 

Membrane-free sperm nuclei added to 
the extracts decondensed and became sur- 
rounded by nuclear membrane during the 
first 10 to 20 rnin of incubation. After 50 to 
60 min, the nuclei appeared to reach meta- 
phase and, 10 to 20 rnin later, underwent 

A 

A 9 0  Cyc B . 
v 

chromosome decondensation and nuclear 
envelope reassembly. Chromosome decon- 
densation and nuclear envelope reassembly 
were inhibited by GST-RII addition at 30 
min, and this inhibition was reversed by 
cAMP (16). 

Other PKA activators such as 8-bromo- 
CAMP, the phosphodiesterase inhibitor 
isomethyl butyl xanthine, or purified PKA 
catalytic subunit also reversed GST-RII- 
induced cell cycle arrest and restored cyclin 
degradation (16). The amount of PKA ac- 
tivity required to restore cyclin degradation 
is critical. The addition of 400 nM cAMP 
or purified PKA catalytic subunit (4000 
U/ml) (18) reversed the block to cyclin 
degradation induced by GST-RII (30 pg/ 
ml). This treatment induced a two- to four- 
fold increase in the activity of PKA, similar 
to that observed in untreated extracts (see 
Fig. 1). However, greater increases in the 
activity of PKA (10-fold or more), caused 

Time (min) 

6 
A 9 0  Cyc B --= 

+ GST-RII 
v 

C 
A 9 0  Cyc B 
+ GSTall CAMP 

v v 

o l  
60 80 100 120 

Time 

cAMP 
v - - .  

by the addition of 50 pM cAMP or purified 
PKA catalytic subunit (40,000 U/ml), failed 
to induce cyclin degradation. This effect 
may be the result of nonspecific phospho- 
rylation that occurs in the presence of non- 
physiological amounts of PKA activity. 

The mitotic arrest induced by GST-RII 
does not appear to result from a Ca2+- 
sensitive mechanism such as the meiotic 
metaphase I1 arrest induced by cytostatic 
factor (CSF) (19). Addition of 400 pM 
CaCl,, which inactivates CSF, did not re- 
store cyclin degradation in extracts arrested 
in mitosis by GST-RII. Conversely, CSF- 
arrested extracts exhibited large amounts' of 
MPF and PKA activity relative to inter- 
phase extracts, which suggested that the 
CSF-dependent arrest occurs after PKA ac- 
tivation (1 6). 

The coordinated oscillations in the ac- 
tivities of MPF and PKA suggest a causal 
relation between these two functions; we 

(min) 

Cyc A 

v 

'6- 

Time (min) 

CycA CAMP 
v v 

Time (min) Time (min) . Time (min) 

Fig. 5. Requirement of MPF, but not cyclin A-p34CdC2, for activation of PKA 
and induction of cyclin degradation. Portions of a CHX-treated extract were 
incubated for 60 min at 23°C. The following reagents were then added: (A) A90 
cyclin B1 (15 pg/ml); (B) A90 cyclin B1 and GST-RII (15 pg/ml); (C) A90 cyclin 
B1 and GST-RII (1 5 pg/ml), then cAMP at 100 min (250 nM); and (D) cAMP at 
100 min (250 nM). (Left panels) Histone HI kinase activity, PKA activity, and 
PKAactivity in the presence of PKI (0, A, and A, respectively; units as in Fig. 
1) during a further 60 min of incubation. Cyclin degradation was monitored 
by adding a reticulocyte lysate (5% of extract volume) containing [35S]me- 
thionine-labeled full-length cyclin B1 after 100 min of incubation. Por- 

tions were withdrawn immediately as well as 10 and 20 min after addition of 
labeled cyclin (inset: an autoradiograph of the ~5S]methionine-labeled full- 
length cyclin B1 during incubation). (Right panels) Densitometric quantitation of 
the labeled full-length cyclin B1 remaining in the extract from the time of 
addition. (E and FJ Portions of a CHX-treated extract were incubated for 60 min 
at 23°C. The following reagents were then added: (E) human cyclin A (10 
pg/ml); (F) human cyclin A (10 pg/ml), then cAMP at 100 min (250 nM). The 
samples were assayed for histone HI kinase activity, PKA activity, and PKA 
activity in the presence of PKI (0, A, and A, respectively) during an additional 
70 min of incubation. Cyclin degradation was monitored as above. 
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therefore investigated a-hether MPF was 
required to  induce the  activation of PKA. 
T o  control the  activation of hlPF, we took 
advantage of the  observation that  cyclin 
synthesis is both  necessary and sufficient 
to  activate MPF in  Xenopus egg extracts 
(4) .  W e  treated cycling extracts with cy- 
cloheximide to  prevent cyclin synthesis 
(Fig. 4 ,  A and B) and noted a steady 
decrease in  the  activities of MPF and PKA 
in  the  treated extract. T o  activate MPF, 
we incubated a n  extract with cyclohexi- 
mide for 60 min  and t h e n  added recombi- 
nan t  nondegradable cyclin B1 ( 1 9 0  cyclin 
B1) ( 2 ,  20): 111 the  absence of A9L1 cyclin 
B1, the  amount of C A M P  and the  activi- 
ties of MPF and PKA remained a t  baseline 
durmg f ~ ~ r t h e r  incubation (Fig. 4 C ) .  Ad-  
dition of A90 cyclin B1 potently activated 
h1PF after a lag, as previously sholvn ( 5 ) ;  it 
also stimulated PKA activity and in- 
creased the  amount of cAh/lP (Fig. 4D) .  
T h e  increase III t he  amount of C A M P  and 
PKA activity was delayed relative to  t h e  
rise in  MPF activity, and began only when 
MPF ac t iv~ ty  approached the  amount  seen 
a t  rnetaphase in  'cycling extracts. These 
k i n e t ~ c s  are similar to  those of untreated 
extracts (see Fig. 1 ) .  LVe conclude tha t  a 
threshold amount  of MPF activity is re- 
quired to  initiate the  activation of the  
cAh1P-PKA pathway. 

W h e n  concentrations of h1PF similar to 
those seen in mitotic extracts are added to 
interphase extracts, cyclin degradation is 
induced after a lag (6) .  However, such con- 
centrations of MPF are insufficient to in- 
duce cyclin degradation if PKA activation 
is prevented. O n  the  other hand, we previ- 
ously reported that sustained PKA activity 
in  interphase prevents the activation of 
h1PF without interfering with cyclin B sta- 
bility (10).  These observations suggest that 
both MPF and PKA activities are necessary 
for cyclin degradation, and that neither 
alone is sufficient. LVe tested this hypothe- 
sis by measuring cyclin stability in extracts 
~ v i t h  h ~ g h  MPF and low PKA activities or 
with low h1PF and high PKA activities. A 
cycloheximide-treated interphase extract 
was divided into samples and incubated for 
60 min. W e  added A90 cyclin B1 to one 
sample and continued incubatio~l for an- 
other 6L1 min; during this time, the  activi- 
ties of MPF and PKA both increased (Fig. 
5A) .  T o  determine the  status of the  cyclin 
degradation patha-ay, we added [35S]methi- 
onine-labeled full-length cyclill B1 (20) 4L1 
min after addition of 19L1 cyclin B1. Under 
these conditions, the full-length cyclin was 
rapidly degraded (Fig. i A ) .  VlJhei1 GST-RII 
was added together with 1 9 0  cyclin B1, the  
degradation of the  full-length cyclin B1 was 
inhibited as long as PKA activity remained 
at baseline (Fig. i B ) .  T h e  il~hibition of 
PKA and stabilization of full-length cyclin 

by GST-RII was reversed by cAh/lP (Fig. 
5 C ) .  111 the absence of 19L1 cvclin B l .  PKA 
activation did not induce ciclin degrada- 
tion (Fig. 5D).  T h e  full-length cyclin B l  
was likewise stable in a control sample to 
which no  additions had been made (16).  
These results indicate that neither MPF nor 
PKA alone can induce cyclin degradation. 
In  the presence of large amounts of MPF, 
the  activation of PKA appears to be re- 
quired for cyclin degradation. 

Cyclin A can activate p34'"c2 and in- 
duce maturation of prophase-arrested oo- 
cy-tes (21) ;  however, cyclin A-p34c"c2 is 
unable to  induce c y c l ~ n  degradation (7). T o  
determine whether cyclin A-p34""2, like 
hlPF, could activate PKA, we added recom- 
binant human cyclin A to  a cycloheximide- 
treated extract. Althoueh histone H 1  ki- 

u 

nase activity rapidly increased, no  activa- 
t ion of PKA was detected, and [35S]methi- 
onine-labeled full-length cyclin B1 was 
stable under these conditions (Fig. 5E).  
Moreover, activation of PKA by added 
cAh/lP did not induce cyclin degradation 
(Fig. 5F). Cyclin A was likewise stable as 
determined by irnmunoblot analysis (16) .  
Hence, the  failure of cyclin A-p34cdc2 to 
cause degradation of cyclin B l  is not solely 
the  result of the  absence of PKA activation. 
Apparently, the  ability to  stimulate the  
cAh1P-PKA pathway is specific to h1PF; 
however, cyclin turnover also depends o n  
other MPF-specific substrates. 

Our  experiments indicate that the  
CAMP-PKA pathway is activated in the  
embryonic cell cycle, either directly or in- 
directly, by MPF, a n  internal and key com- 
ponent of the  cell cycle machinery. H o w  
ever, the  activation of PKA appears to be 
required for the  i~lactirlatio~l of h1PF and 
exit from mitosis. T h e  CAMP-PKA pathn-ay 
also oscillates during the  somatic cell cycle, 
with peak activity a t  inetaphase (22,  23).  111 
some studies, this phenomenon has been 
associated with increased adenyl cyclase ac- 
tivity (23).  Because completion of mitosis is 
also independent of external stimuli in the  
somatic cell cycle (24) ,  activation of the  
cAh/lP-PKA oathwav bv MPF could be a , , 
general mechanism for exiting mitosis. 

Oscillations in  CAMP concentration in- 
duced by MPF can account for the  fluctua- 
tions in PKA activity in Xenop~is egg ex- 
tracts. Xenop~is oocytes are reported to  con- 
tain adenyl cyclase activity in both metn- 
brane-bound and cytosol~c forins. T h e  
former has been shown to be a target of 
progesterone, which induces a transient 
drop in CAMP con cent ratio^^. T h e  decrease 
in cAh/lP concentration appears to be re- 
quired for resumption of meiosis (25). 
Whether MPF increases the intracellular 
concentration of CAMP by stimulating one 
or both adenyl cyclases, by illhibiting phos- 
phodiesterases, or by a comb~nat ion of these 

mechanisms is still unknown. These data, 
however, indicate that the  control of acti- 
vatio11-i~lactivatio~l cycles of the cAh1P- 
PKA pathway may play a critical role in 
regulating transitions through the cell cycle. 
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Neonatal Tolerance Revisited: Turning on 
Newborn T Cells with Dendritic Cells 

John Paul Ridge," Ephraim J. Fuchs,l-Polly Matzinger 

For some time it has been thought that antigenic challenge in neonatal life is a tolerogenic 
rather than immunogenic event. Reexamination of the classic neonatal tolerance exper- 
iments of Billingham, Brent, and Medawar showed that tolerance is not an intrinsic 
property of the newborn immune system, but that the nature of the antigen-presenting 
cell determines whether the outcome is neonatal tolerance or immunization. 

N e a r l y  half a century ago, Burnet proposed 
that the  f ~ l n c t ~ o n  of the  immune system is 
to distinguish self from nonself (1)  and that 
self-tolerance is set early in life by the  elirn- 
ination of self-reactive lymphocytes ( 2 ,  3) .  
Though Burnet's group could not demon- 
strate such a n  early critical period ( 4 ,  5), 
the  paradigm was established when Me- 
dawar and colleagues (6)  found that rodents 
injected at birth with hemopoletic cells 
from a genetically different donor were later 
able to accept transplants from the  same 
donor, thereby providing support for the  
idea that neonatal lymphocytes are unique- 
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ly susceptible to  the  induction of tolerance. 
In  the ensuing decades, inquiries into 

the  mechanisms involved led to two main 
categories of InterpretatLon. Passwe models 
suggest that experimental neonatal toler- 
ance occurs by negative selection in the  
same way as does natural self-tolerance. 
Neonatal mice, having so few tnature T 
cells, would be unable to reject the  donor 
cells, which would therefore take up resi- 
dence and circulate to the  thymus to impart 
tolerance by deletion In the  same way as 
do  the  normal cells of the  r ec~p ien t  ( 3 ,  7 ) .  
Active models suggest that  the  newborn T 
cells generate predotninantly suppressive, 
anti-idiotypic, or "deviated" T helper cell 
2 (T,2) immune responses tha t  protect 
from self-rejection (8, 9 ) .  However, new- 
born mice have occasionally been immu- 
nized to  generate T H 1  responses (1 0) and, 
though some viruses induce tolerance if 

given neonatally (1 1 ),  others iininunize 
(4). These examples of neonatally induced 
iininunity are not  easily explained by el- 
ther the  passive or the  active models of 
neonatal tolerance. 

W e  analyzed the  poss~biiity that the  crit- 
ical coinponents in  experiinental neonatal 
tolerance are the donor cells, not the  re- 
sponding T cells. Our  theoretical basis was 
the  "Danger" model (12),  which suggests 
that the  iminune systein does not discrimi- 
nate between self and nonself but between 
dangerous and harillless entities, and that 
the primary distinction is made by antigen- 
presenting cells (APCs) ,  which are activat- 
ed to  up-regulate costimulatory molecules 
only when ~llduced by alarm signals from 
their environment [for example, by tissues 
undergoing stress and abnormal death or by 
microbial products (1 2 ,  13)]. If, as suggested 
by "Two-S~gnal" models, lymphocytes are 
rendered tolerant by antigen recognition in 
the  absence of costimulatory signals (14- 
16) ,  then the  absence of costimulation by 
normal, healthy peripheral tissues (1 7, 18) 
should continuously induce T cell tolerance 
in the  periphery. Froin this perspective, 
there is n o  need for a n  early period of 
tolerizability, and newborn T cells should 
have the  same optlons as adult virgin T 
cells, being activated in  the  presence of 
costimulatory signals and tolerized in  their 
absence. 

LVhy then are newborn T cells tolerised 
by an  ~nject ion of large numbers of spleen 
or bone marrow cells? W e  speculated that 
the  reason might lie with the  mixture of 
cells III the  donor inocula, w h ~ c h  contain 
very few professional APCs (1 9 )  and a large 
percentage of T and B cells, w h ~ c h  cannot 
costimulate virgin T cells (20-22). Thus 
the  tiny number of virgin T cells in new- 
born mice might easily be overwhelmed by 
interactions with the  tolerogenic cells in 
the  i~loculurn before ever having a n  oppor- 
t~lni ty  to meet a n  activating A P C  such as a 
dendr i t~c  cell. 'We expected, however, that 
if we isolated the  critical cotnponents of the  
~ ~ I O C L I ~ L I ~ ,  the  neonates should become 

by an  injection of dendritic cells 
and tolerized by the  B cells. 

T o  test this view, we injected newborn 
female C57BL16 (B6) Inice with B6 rnale 
cells and tested their cytotoxic T lympho- 
cyte (CTL) responses to the  rnale antigen 
H-Y. In  the classic studies (6 ) ,  the  donors 
and recipients differed by major histocotn- 
~a t ib i l i ty  complex ( M H C )  antigens, to 
which primary responses are strong and for 
which the  window of tolerisability is short 
and the  induction of tolerance is a major 
accomplishment. T o  test for neonatal prim- 
ing, we chose the  in vitro C T L  response to 
H-Y, which is cotnpletely dependent o n  
prior in vivo itnmu~lization. In  addition, the  
responses are less vigorous than those to 
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