
basal flrn la)jer, coupled to removal of gases by ver- 
tical advecton of air caused by compresson of the 
firn. The effusional enrchment ratio for two isotopes 
is controlled by the klnetic fractionation factor a = 
(M!iviJ1", and the resulting isotope enrichment is 
given by the Rayegh equation. 

R/Rj = (I - FL)O-' 

where F IS the fraction of component N lost by 
effusion through a molecular leak Because effu- 
slonal enrichment depends on the fractional gas 
loss, the expected gravitational and effuslonal en- 
r~chments cannot be compared unless FL is speci- 
fied We used the mean 'eO/'60 enrchment in the 
ice samples to calculate a fictive value of 1.7933 for 
FLiO,) and then scaled the F values for other com- 
ponents to FL(02) Thus, [ I  - FLi])] = [ I  - FL(0,)ln , I ,  

where a(]) ? (i\ll,-/M,)'", the fractionation factor for 
any component] bersus 0, The resutng F values 
(1.91 % for N, and 1.69% for jGAri were then used to 
calculate the other effusional ratio enrichments, 
scaled to FLi02) The effusonal and gravitational en- 
richments (Z = 60 m, T = 2 0 ° C )  for the various 
ratios are as follows: 

Component A!EV LiGrav) 
p e r m )  (per mil) 

8'5N 0 33 0.28 
81e0 0.54 0 56 
VCAr 0 87 112  
L(02/N2) 1 24 1.1 1 
L(Ar!N,) 3.14 3.35 
L(e4Kr/3SAr) 5.90 13 50 
L('5LXe/3SAr) 8.18 26.85 

The gravtatonal a i d  effusional ratlo enrlchments 
are ndistngushable within limits of analytical ac- 
curacy for all these ratios, with the excepton of the 
eAKr!3GAr and 'j2Xe!jSAr pairs for wh~ch the grav- 
itational enrlchments are 2.3 and 3 3 tmes the 
calculated effuslonal effects, respectivel)~ More- 
over the predicted ratlo of eAKr/3SAr to ' 60 / 'G0  
enrichments is 24.1 for gravitational separation ver- 
sus only 10 9 for effusion Note that the efius~onal 
enrchment rato is constant over the range of Fig 2 
because, to flrst order the ratio is slmply a(36/ 
32)[a(84/36) - l]/[a(34/32) - I ]  = 10 9 (Here, the 
mass numbers are used only as labels for the indi- 
vidual fractionation factors ) 
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River Meandering as a Self-organization Process 
Hans-Henrik Stalum 

Simulations of freely meandering rivers and empirical data show that the meandering 
process self-organizes the river morphology, or planform, into a critical state character- 
ized by fractal geometry. The meandering process oscillates in space and time between 
a state in which the river planform is ordered and one in which it is chaotic. Clusters of 
river cutoffs tend to cause a transition between these two states and to force the system 
into stationary fluctuations around the critical state. 

T h e  rneandering river systeln is charac- 
terized by recurrent river planforin pat- 
terns, repeated w ~ t h  little va r i a t~on  from 
one  river to the  next irrespective of their 
nlagnitude and  from one  scale to  another 
within each rlver. This consistency sug- 
gests that  a higher level of processes forins 
by self-organization from the  physical pro- 
cesses of deposition and erosion operating 
i n  the  system. These physical processes 
may be descr~bed by coiltlnuuln fluid me- 
chanics. Al though rneandering dynamics 
can  be s i~nulated from lnodels based o n  
contlnuuin mechanics, such lnodels reveal 
little about the  holistic, spatioternporal 
properties of the  meander~ng  process, for 
example, the  hierarchical, fractal geome- 
try of the  river planform. [Self-affine frac- 
tal s c a l ~ n g  of rneandering river planforrns 
was first suggested in  (1 )  and has been 
analyzed in  ( 2 ,  3) . ]  It has therefore been 
suggested that meander~ng  needs to  be 
understood In terms of chaotic d v n a ~ n ~ c s  
and self-organizat~on (4-6). In  this report, 
I use a fluid lnechanical model developed 
by Parker, Hoa~ard ,  and co-workers (7,  8 )  
to explore the  dynarnical properties of me- 
a n d e r ~ n g  by simulation. 

Meandering IS caused by the operation 
of two opposing processes (4 ) ,  a:llich are 
linked by a coinplex feedback that 1s partly 
under local geollletrical control: lateral 1111- 
gratlon acts to increase sinuos~ty, whereas 
cutoffs ( the  for~natlon of oxbow: lakes) act 
to  decrease it. Lateral migration results from 
bend eroslon and deposition (4 ,  9) .  Cutoffs 
arise from a local geometry (Kinoshita 
shape), which is created by the lateral ml- 
gration process ( 4 ,  10,  11  ). 

Department of Earth Sciences, University of Cambridge, 
Cambridge CB2 3EQ, UK. 

T h e  state of the system is conveniently 
measured by the dimensionless parameter 
sinuosity 

~vhere  L 1s the  leneth of the  river alone its " 
course between two points and P 1s the  
shortest length between the  salne points. 
T h e  quantities L and P are rneasured in  
units of average w ~ d t h ,  ec;. W h e n  the  river is 
straight, sinuosity has a mlnlmuin value of 
1. In  principle, n o  maximum value exlsts. 
Sinuosity is related to the  inforlnatlon con- 
tent and symmetry of the systeln (5). Ox-  
bov, lakes have a finite length range, with a 
lnininluln value of -7 and a max i rn~~in  of 
-4Ceu. 

In  the siinulations (Fig. 1, A and B), the  
river typically formed two coexisting do- 
mains, one with c o ~ ~ s i s t e n t l ~  high s~nuosity 
(mean s - 3.5) and one w ~ t h  consistentlv 
low s~nuosity (mean s - 2.7). Because a 
s t r a~eh t  l ~ n e  1s the  most ordered state the  " 
river can take (zero entropy, perfect axla1 
symmetry), the  low:-s~nuosity regions repre- 
sent a d~stinctly Inore ordered state than the  
high-s~nuosity regions (weak versus strong 
asy~nnletry). 

T h e  low-sinuosity domains in  Fig. 1, A 
and B, formed as a result of a clustering of 
cutoff events. Each cutoff has a tendency to 
trlgger other cutoffs in ~ t s  v i c ~ n ~ t y  by caus- 
ing accelerated local change, and t h ~ s  may 
generate a cluster of cutoffs In space and 
tune. Sim~larly,  in  n a t ~ ~ r a l  rivers, successive 
cutoffs occur only rarely with the same 
spacing or a t  regular ~ntervals,  and so clus- 
ters are formed. 

W h e n  the s~mulated river was locally 
straightened by cutoffs, the  dynanl~cs died 
down to create a window: of slow change 
that persisted for aa:h~le,  before a gradual 
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buildup of sinuosity. Such low-sinuosity do- 
mains are intermittent windows of relative 
order in the chaotic high-sinuosity state (5, 
12). Within this state, change is rapid and 
the system has little capacity for retaining 
spatial informat~on (hardly any single me- 
ander persisted in recognizable form for 
more than 4 0 0  iterations). 

The  effect of cutoffs depends on  the 
state of the system. Cutoffs in the chaotic 
state are likely to bring the system over to 
the ordered state (Figs. l A ,  lB, and 2C), 
whereas cutoffs in the (mature) ordered 
state are likely to hring about chaos (Fig. 
2A). The  immediate effect of cutoffs is 
always to  lower sinuosity, but their long- 
term effect is context-dependent. In the 
ordered state, cutoffs tend to induce strong 
axial asymmetries (create sharp bends), 
which arc subsequently amplified by the 
meandering process (Fig. 2B). In the cha- 
otic state. cutoffs tend to remove the most 
asymmetric parts of the river (large and 
often irregular Kinoshita meanders). caus- , . 
ing the system to revert back to a state with 
weak axial and hend asymmetries (Fig. 2C). 

In the simulations, a n  increase in sinu- 
osity is caused hy the slow enlargement of 
river bends that is in turn caused by bank 
erosion (Fig. 2B). A decrease in sinuosity is 
caused hy cutoff events (Fig. 2C). These 
opposing processes self-organize the sinuos- 
ity into a steady state around a mean value 
of s = 3.14, the sinuosity of a circle (T) (1 3 ,  
14) (Fig. 3A). The  mean value of T follows 
from the fractal geometry of the planform 
(14). This is the intermediate sinuosity val- 
ue characterizing the transitions between - 
domains of the two states seen in Fig. 1, A 

- Space --c 

Fig. 1. (A) The spatiotemporal evolution of a river during a period of 4000 iterations. Mean river length is 
1570w. The state of the river planform was recorded every 200 iterations, and a simple tracking routine 
was used to find segments of sinuosity above or below avalue of 3.1 4 and longer than 30 river width units. 
This yielded a pattern of intermittent domains of an ordered (low-sinuosity) state with mean sinuosity of 
=2.4 (encircled). These domains coexist with a chaotic state having a mean sinuosity of -3.5. Numbers 
at the left refer to the total sinuosity of each river planform. (See Fig. 3A for further details of the simulation 
run.) (6) The evolution of local sinuosity (Z = 3w) in space and time shows the full-scale range of 
low-sinuosity domains of intermittent order (white). The black background is the chaotic (high-sinuosity) 
state. The time interval spans 16,000 iterations with every 200 iterations shown [this interval is located 
within a regime of stationary global sinuosity, as is that of (A)]. Mean river length is 3000w. 

lo - -- - -- - 

3000 5000 
Iteration 

2 5. 
1 Fig. 2. (A) The initial spatiotemporal evolution of a 5 , , 

. , 
' I ,  

" : , . .: . :. 2 , ,. '.'.'% ,. . " . . 
I .  , . , . simulated river starting with a nearly straight line, ..I . 

shown at intervals of 200 time steps for the first 5000 lo-. - -- -- 
5000 8000 

iterations. Both an ordered and achaotic state occur, Iteration 
with the transit~on between them init~ated by a cutoff 
cluster. The ordered state in the lower part of the figure has reached a mature stage in which the train of 
bends is still highly symmetrical around the original axis, while at the same time each bend is growing into 
an asymmetrical shape (Kinoshita shape) (7 7). The chaotic state seen in the upper half of the figure was 
initiated by a cutoff cluster occurring in the ordered state. (B) The spatiotemporal self-organization process 
during the initial part of the time series in Fig. 3A (starting from a nearly straight path). After an initial growth 
phase due to development of a wave form with increasing amplitude, the sinuosity falls off in steps as 
neighboring bends grow to meet each other, causing a series of cutoffs. (C) Spatiotemporal self-organiza- 
tion when starting from an arbitrarily curved initial path with sinuosity s = 5.0. As in (B) there is an initial rapid 
growth phase as undulations begin to grow on the original convolut~ons, followed by two anomalously large 
cutoff events that bring the sinuosity down to -1.3. 

and B. That  the steady state originates from age sinuosity (T) independently of initial 
two opposing processes is confirmed by the conditions. This rohustness of the self-orga- 
monotonic rise in sinuosity when the cutoff nization process suggests a dynamical state 
process is suppressed (Fig. 3B). Figure 2, B of self-organized criticality (SOC) (4, 6). 
and C,  demonstrates that sinuosity will go If the simulated river actually goes to 
to a stationary state around the same aver- SOC, then spatial and temporal power-law 
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scaling would be expected (6). The SOC 
model predicts that the cutoff (oxbow lake) 
clusters correspond to the dynamical notion 
of "avalanches" with a fractal size distribu
tion. This idea is confirmed by the total 
distribution of single and clustered oxbow 
lakes [using a clustering criterion (15)], 
which follows a power law over nearly two 
orders of magnitude (Fig. 4A). I analyzed the 
scaling properties of sinuosity fluctuations in 
the stationary state by rescaled range (R/S) 
analysis, which is a method for identifying 
power-law scaling in time series (16). The 
R/S analysis detected power-law scaling over 

two orders of magnitude (Fig. 4B), an indi
cation that the fluctuations are invariant 
with respect to scale. Finally, the SOC state 
is associated with power-law scaling in space. 
The bends of the simulated river scale over 
more than two orders of magnitude, with a 
fractal dimension close to the dimension 
measured for the freely meandering Jurua 
River, Brazil (Fig. 4C) (3, 17, 18). 

In river meandering simulations, the dy
namical state of SOC is related to the occur
rence of spatiotemporal chaos and intermit-
tency as follows: In the ordered state cutoffs 
act to destroy order, whereas in the disor-

15,000 

Fig. 3. (A) Time series of sinuosity evolution from the simulation of a 
free meandering river with constant discharge and uniform bank 
resistance at low gradient corresponding to b = 2. The initial state is 
a quasistraight course (€ = 500w) with random perturbations and s 
« 1. The straight line in the stationary part of the time series is the 
mean sinuosity of 3.14 ± 0.34 (13). (B) Enlargement of the initial part 
of the time series in (A), compared to the evolution of sinuosity if the 
cutoff process does not occur. 

30,000 

1000 2000 3000 

Iteration 

2.0 2.5 3.0 3.5 4.0 
log(Size of oxbow lakes; clusters and single; w2) 

Fig. 4. (A) Cumulative size-frequency distribution 
of oxbow lakes generated by the simulation de
scribed in Fig. 1B. The distribution includes ox
bow lake clusters [generated according to a sim
ple clustering criterion (15)] and the residual single 
oxbow lakes. The straight line is a fit of the function 
N(M > m) = 2 .64/TI " ° - 6 6 to 16 of 20 avalanches 

(filled circles), where N(M > m) is the number of 
avalanches larger than size m (area enclosed by 
an avalanche). Deposition rate was chosen as 
0.024 width units per iteration. This is the smallest 
value that does not generate overlapping sand-

log (Lag) 

1 2 
log r (width units) 

bodies (for a sandbody thickness of 3w) and at the same time gives a total depth roughly equal to the 
length of section. The depth and length thresholds could then be set as equal. The value used, 26.3w, is 
close to the percolation threshold in the depth direction (26.7w). (B) The R/S analysis of the sinuosity time 
series of Fig. 3A between iterations 3000 and 30,000. The straight line is a fit of the function (R/S) = 1.35 
(lag)054 to seven of the data points (filled squares) (13, 16). (C) Power-law scaling over three orders of 
magnitude of a simulated (open squares) and a real (filled squares) meandering river, the Jurua River (13). 
The scaling has been found by measuring the river with yardsticks of different lengths (the divider method) 
(15). The straight lines are fits of the function N = arD to the data, with D = 1.18 for the river and D = 1.28 
for the simulation. The difference in the constant term is due to the different length of the river segments. 

dered (chaotic) state cutoffs create order. 
Each cutoff also increases the probability of 
cutoff formation in its vicinity by accelerat
ing local change, thereby giving rise to spa
tiotemporal clusters (avalanches) of cutoffs. 
This avalanche dynamics is an equalizer that 
keeps the system fluctuating around a critical 
state, by creating and extinguishing coexist
ing domains of order and chaos. The simu
lated meandering river is therefore in a state 
of eternal recurrence (19). 
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High-Temperature Study of Octahedral 
Cation Exchange in Olivine by 
Neutron Powder Diffraction 

C. M. B. Henderson,* K. S. Knight, S. A. T. Redfern, B. J. Wood 

Time-of-flight, neutron powder diffraction to 1000°C provides precise octahedral site 
occupancies and intersite distribution coefficients for MnMgSiO, and MnFeSiO, olivines. 
lntersite exchange occurs in minutes down to 500°C. Equilibrium distribution coefficients 
show that manganese ordering into the larger octahedral site decreases with increasing 
temperature. Exchange energies are 15.7 and 10.1 kilojoules per mole for magnesium- 
manganese and iron-manganese, respectively. Distribution coefficients deduced for 
FeMgSiO, olivine suggest an exchange energy of 4.8 kilojoules per mole. lntersite ex- 
change energies are consistent with diffusion coefficients in the order iron > magnesium 
> manganese. Geothermometry based on magnesium-manganese and iron-manganese 
exchange may be possible only for samples equilibrated below 500°C. 

A s  olivine [(Mg,Fe,Mn),SiO,] is the  ma- 
jor constituent of the  Earth's upper man-  
tle, its physical properties d o ~ n i n a t e  the  
deep Earth's geophysical and geochemical 
properties do\vn to  the  410-km seismic 
discontinuity, which is attributed to  the  
transitiolls of olivine to  p- and y-spinel- 
type polyrnorphs A common simplifying 
assumption is that  olivine is near ideal, 
with Mg and Fe fullv disordered over M 1  

and M2, the  t\vo octahedral sites. In- 
tracrystalline M-site partitioning would, 
ho\vever, be expected to modify olivine's 
thermodynamic stability, t he  diffusion 
rates of bl-site metals, and (potentially) its 
elastic parameters. Furthermore, if signifi- 
cant  partitioning does occur, M-site occu- 
pancies might also provide a means of 
using olivine as a petrogenetic indicator 
for therrnolnetry and speedornetry in a 
wide range of rocks. 
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verstv of Manchester, Manchester M I 3  SPL, UK. Crystal chemical studies of olivines, 
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0x1 1 O ~ X ,  UK. iressure'  (P) ,  show tha; divalent cations 
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slty of Cambrdge, Cambr~dge CB2 3EQ, UK. tend to  order preferentially between M2,  
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Br~stol BS8 1 RJ, UK. site; for example, Fe, Ni ,  and Zn into  M I ,  
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