Gravitational Enrichment of 2*Kr/3Ar Ratios in
Polar Ice Caps: A Measure of Firn Thickness and
Accumulation Temperature

H. Craig and R. C. Wiens*

Measurements of 84Kr/36Ar ratios in Greenland ice show that gravitational separation in
the firn layer is responsible for the enrichments relative to atmospheric ratios. The
84Kr/38Ar ratio is enriched by 12.8 per mil and is 24 times the '80/'°0 enrichment in
trapped O,, as predicted for gravitational fractionation. Because gravitational enrich-
ment depends on firn thickness, which in turn depends on annual mean temperature,
noble gas ratios provide a method for determining paleotemperatures and ancient firn
thicknesses in polar ice caps. The gravitational effects are modulated by about 10 to
15 percent by atmospheric concentration changes caused by temperature effects on
oceanic gas solubilities. The availability of five noble gases should make it possible to
deconvolute the solubility and gravitational enrichments for calibration of 80 paleo-
temperatures throughout the polar ice sheets.

In 1985, Horibe et al. (1) discovered that
O, trapped in Greenland ice is enriched in
180 by ~0.6 per mil relative to atmospher-
ic O,. Craig et al. (2) showed that this
effect could be the possible result of mo-
lecular gravitational fractionation in the
unconsolidated firn layer above the ice, in
which gravitational thermodynamic equi-
librium is maintained in what is essentially
a thick columnar sieve that prevents con-
vective mixing of the entrained air. '’N
and 80 enrichments in air trapped in the
upper 100 m of Greenland ice were found
to be consistent with the predicted gravi-
tational effects in the firn column (2).
Because the magnitude of the gravitation-
al effect is a measure of the thickness of
the firn layer, measurements of noble gas
ratios can be used to establish a history of
paleothicknesses of firn layers and their
mean accumulation temperatures in polar
ice caps.

Firn thickness in the present-day polar
ice caps is correlated with ambient firn
accumulation temperature (Fig. 1) (3); this
correlation reflects the strong temperature
dependence of the rate of firn-to-ice tran-
sition by pressure sintering. Thus, if accu-
rate measurements of gravitational separa-
tion effects can be made with the use of
gases trapped in polar ice, they will provide
a new parameter for the study of past cli-
matic changes. In this report, we present
measurements of a noble gas pair with a
large mass difference, 8*Kr and *°Ar, and
show that gravitational separation is indeed
the dominant fractionation process.
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and perfect-gas ratios is described by the
Gibbs equation (4):

R/R; = explgZ(AM)/RT] (1)

where g is the gravitational acceleration at
65°N, Z is the thickness of the firn layer, R*
is the gas constant, T is the (isothermal)
temperature of the column (in kelvin), AM
= (M, - M) is the mass difference between
two isotopes (in atomic mass units), R(Z) is
the isotope ratio N/N, and Ry is the corre-
sponding ratio in the free atmosphere at the
surface. To first order, the isotope ratio
enrichment 8 (per mil) is given by

d ~ 1.180(AM)Z/T (2)

with Z in meters (5). Equilibrium gravita-
tional separation thus depends only on the
mass difference AM between components,
rather than on the fractional mass differ-
ence (AM/M) that governs fractionation by
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Fig. 1. Plot of observed values of firn thickness at
Arctic (circles) and Antarctic (squares) polar-ice
sites versus temperatures at a depth of 10 m.
Data are from Paterson [(3), p. 15]. The firn tem-
peratures are approximate mean annual surface
temperatures on the ice sheets during snow ac-
cumulation. The linear fitis given by Z = —1.30T +
31.5.

SCIENCE  »

VOL. 271 + 22 MARCH 1996

kinetic processes such as effusion (6).

We chose 8Kr and *SAr for analysis
because of their large AM (48 amu), their
atmospheric ratio (1:48), which is attrac-
tive for precision mass spectrometry, and
because both are noble gases. We used a
noble gas machine with an effective radius
of 54 cm (7) equipped with an in-line Daly
multiplier followed by a normal Faraday
collector. The ice samples, from a shallow
core at the Dye 3 Greenland station, were
drilled by our laboratory and the Polar Ice
Core Operations (PICO) group in 1988 and
stripped of gases shortly afterward in our
laboratory.

Table 1 lists the measured ratio enrich-
ments in the ice. Both 8°N and 8'80 are
essentially constant (at 0.24 and 0.54 per
mil, respectively) in the approximate ratio
expected for either fractionation process,
showing the inability to distinguish be-
tween the two processes by N and O iso-
topes or by N,, O,, and Ar concentrations
(6). The 3*Kr/°Ar enrichments relative to
free air have a mean value of 12.85 per mil,
with a standard deviation of the mean (o)
of +0.3 per mil for all measurements. 8*Kr/
36Ar enrichments are clearly much greater
than predicted for effusional fractionation
(5.9 per mil) and are much closer to,
though somewhat less than, the calculated
gravitational effect of 13.5 per mil (6).
However, the best test for distinguishing
the two processes is the relation between
AC*KrCAr) and 8'80 because this ratio is
independent of depth. Figure 2 shows this
relation together with the predicted slopes
of 24 for gravitational fractionation and
10.9 for effusional fractionation (6); these
data confirm that gravitational equilibrium
is the primary separation process in the firn
column.

The data in Fig. 2 define an “effective
depth” (Z4) for the observed gravitational
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Fig. 2. Measurements of (3*Kr/%6Ar) versus 80 in
the Dye 3 ice core. The square marks the mean
values. The solid line with a slope of 24 is the
calculated relation for gravitational fractionation,
with horizontal bars marking thé expected firn-
thickness increments (in meters) along the gravi-
tational enrichment locus. The dashed line shows
the expected relation for effusional fractionation,
scaled to the mean 180 value (6).



Table 1. Isotopic enrichments in the Dye 3 Greenland ice core (65.2°N, 43.8°W). N is the number of

ice-air comparisons (7); ~, sample lost.

z AAUN,) 8N 5150 AEKIOA o i
m) (permi)  (permi)  (per mi) (oer mil permiy  Ne  AlANBTO
72.05 3.9 017 0.50 12.32 2.2 5 24.64
84.23 16 0.22 053 13,63 26 10 25.71
9484 -0 0.29 0.55 13.67 0.6 6 24.85
94.84 23 033 0.51 12.08 0.4 6 23.69
94.84 0.4 0.24 0.54 1160 0.6 4 51.48
109.35 6.3 0.26 0.58 12,60 2.4 5 21.72
122,28 16 - 057 1352 12 5 23.72
122.38 - 0.21 0.57 12,27 12 5 21.53
149.03 5.5 0.19 0.54 14.00 26 5 25.93
Mean 21 0.24 0.54 12.85 03 23.80
Air (1) : -147 5.2 4
Air (2) 0.14 05 3
Air (3) 1.26 12 6

*The 94.84-m 84Kr/38Ar ratios were measured on the Daly multiplier (versus all others on the Faraday collector). The
smaller values of o, for the Daly measurements reflect the greater signal/noise ratio relative to samples measured on the

Faraday collector.

enrichments, which is calculated from Eq. 1
to be 57.3 m for A(®*Kr/>°Ar) and 58.1 m
for 8'80. The estimated firn thickness at
Dye 3 is 65 to 70 m (3). The firn-ice
transition can also be established by the loss
of helium from core samples during the
pumping out of air in the on-site He sam-
pling system. Our measurements showed He
losses of 99.5, 89, and 82% at core depths of
49, 64, and 73.5 m, respectively, and con-
stant He concentration at 83 m and below;
these data fix the firn-ice boundary at 77 =
3 m. Thus, the effective depth of 57 m is 20
m less than the actual transition, or 74% of
the true depth. We have proposed two
mechanisms for this effect (2). First, there
are transient mixing effects in the surficial
firn layer caused by barometric pressure

Table 2. Predicted gravitational and solubility
fractionation effects for a global cooling of 5°C,
compared to the present gravitational effect at
Dye 3. The A values (per mil) correspond to state O
(fim: Zy = 57 m, T = —19°C; ocean + atmo-
sphere = 5°C) and state 1 (fim: Z,, = 100m, T =
—52°C; ocean + atmosphere = 0°C). The
Ay(Grav) values are the predicted present Dye 3
gravitational effects scaled to the observed 84Kr/
S8Ar ratio by Eq. 1. A, ,4(Grav) is the state 1 grav-
itational enrichment relative to the state 1 atmo-
sphere; thus, Ay(Grav) — A, ,,(Grav) is the change
in gravitational enrichment assuming no changes
in atmospheric ratios. A, ,(Atm) is the atmospher-
ic ratio change from state O to state 1 calculated
(Eq. 3) for oceanic solubility changes. 24, is the
total ratio enrichment in state 1 ice relative to the
present state O atmosphere.

AO A‘1/1 A1/

Ratio AM (Grav) (Grav) (Atmo) i
O,/“°Ar -8 -21  -43 -03 -46
N,/*Ar  —12 -82 -64 08 -56
“He/*°Ar  —-32 -85 —169 1.4 —-156
°Ne/*Ar -16 —-42 -85 13 -7.2
B4Kr/®BAr  +48 (12.85) 259 —-2.6 233

132Xe/%Ar +96 25.9 52.6 —9.3 428

+AIr samples processed through the ice extraction procedure.

waves. Second, there is a small upward ad-
vection of air in the firn caused by compres-
sion, which can be calculated from the firn
density-depth relation. The advective ve-
locity is ~50 cm year™! at the surface,
decreasing to ~1 cm year™! at 65 m, while
the ratio of diffusive to advective fluxes
increases from 0.16 at the surface to 1 at 40
m and to 24 at 68 m. This advective flux
may also reduce the expected enrichment
effect: a somewhat similar diminution of an
isotope separation effect has been observed
in the “carrier diffusion” process in the flow
of gases through porous sandstone (8).
However, given the high porosity in the
uppermost firn layers, it is more likely that
near-surface mixing by atmospheric pres-
sure waves is the dominant effect.
Gravitational signals in ice caps reflect
the ratio enrichments relative to the atmo-
spheric composition at the time of firn ac-
cumulation, and because atmospheric ratios
are themselves affected by global tempera-
ture variations through changes in the oce-
anic solubilities of gases, the solubility effects
modulate the gravitational effects relative to
present-day air to some extent. The solubil-
ity effects are difficult to calculate because of
horizontal and vertical temperature gradients
in the atmosphere and the ocean and their
variations with climatic change. For a first
approximation we used a simple model of an

atmosphere and ocean in isothermal equilib- .

rium, in which the atmosphere is contained
in a finite volume, V,, and partitioning of
gases is scaled by the ratio of V, to the
volume of seawater, Vg. In this system, the
atmospheric content of a gas N for two sys-
tem-temperatures T, and T is given by

[ValVs + (BoTo/TT)]
[ValVs + (B T\/TT)]

NI/NO = (3)

where B is the Bunsen solubility coefficient
(volume/volume), V, = 800 liters per
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square centimeter of Earth’s surface (the
finite atmospheric volume that would con-
tain the atmospheric gases at P = 1 atm),
Vg = 269 liters per square centimeter of
Earth'’s surface (so that V,/Vg = 3),and T™
= 273 K. Using the B values (9), we cal-
culated the changes in atmospheric content
resulting from a global temperature change
from 5°C (state 0) to 0°C (state 1) (10):
N,, =0.55 per mil; O,, —1.68 per mil; Ar,
-1.35 per mil; Kr, =3.9 per mil; and Xe,
-10.6 per mil (He and Ne, <0.1 per mil).

Table 2 compares the gravitational and
solubility effects on various ratios for a
global cooling of 5°C from state O to state 1.
The firn parameters (Z and T) are the
present Dye 3 values (57 m and —19°C) for -
state 0, and 100 m and —52°C for state 1
(11). The atmospheric effect of increased
solution in the ocean, Aj,(Atm), is
~10% of the state 1 gravitational enrich-
ment, A,;,(Grav), for all ratios except
20Ne/2°Ar and 3ZXe?%Ar, for which the
atmospheric changes are ~16.5% of the
gravitational effects. While the total
changes in O,/Ar and N,/Ar ratios are
essentially unmeasurable, the Kr/Ar and
Xe/Ar state 1 versus state O enrichments,
A, are 10.4 and 17 per mil. It is appar-
ent that.for the simple model used here,
measurements of the total state 1 Kr and
Xe enrichments in an ice sample (XA, ),
together with the known ratios of Kr to Xe
gravitational enrichment effects (which
are independent of firn depth and temper-
ature) and the mean B ratios, can be used
to calculate precisely the state 1 firn
thickness and surface ice-sheet tempera-
ture. Of course, the actual global system is
much more complex than our simple mod-
el, but the availability of four noble gas
pairs provides a rich matrix of data that
can be used to model the gravitational and
solubility effects in conjunction with mod-
els of global temperature variations that
incorporate temperature changes of polar
ice cap surfaces as related to mean global
temperatures.
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River Meandering as a Self-Organization Process

Hans-Henrik Stglum

Simulations of freely meandering rivers and empirical data show that the meandering
process self-organizes the river morphology, or planform, into a critical state character-
ized by fractal geometry. The meandering process oscillates in space and time between
a state in which the river planform is ordered and one in which it is chaotic. Clusters of
river cutoffs tend to cause a transition between these two states and to force the system
into stationary fluctuations around the critical state.

The meandering river system is charac-
terized by recurrent river planform pat-
terns, repeated with little variation from
one river to the next irrespective of their
magnitude and from one scale to another
within each river. This consistency sug-
gests that a higher level of processes forms
by self-organization from the physical pro-
cesses of deposition and erosion operating
in the system. These physical processes
may be described by continuum fluid me-
chanics. Although meandering dynamics
can be simulated from models based on
continuum mechanics, such models reveal
little about the holistic, spatiotemporal
properties of the meandering process, for
example, the hierarchical, fractal geome-
try of the river planform. [Self-affine frac-
tal scaling of meandering river planforms
was first suggested in (I) and has been
analyzed in (2, 3).] It has therefore been
suggested that meandering needs to be
understood in terms of chaotic dynamics
and self-organization (4—6). In this report,
[ use a fluid mechanical model developed
by Parker, Howard, and co-workers (7, 8)
to explore the dynamical properties of me-
andering by simulation.

Meandering is caused by the operation
of two opposing processes (4), which are
linked by a complex feedback that is partly
under local geometrical control: lateral mi-
gration acts to increase sinuosity, whereas
cutoffs (the formation of oxbow lakes) act
to decrease it. Lateral migration results from
bend erosion and deposition (4, 9). Cutoffs
arise from a local geometry (Kinoshita
shape), which is created by the lateral mi-
gration process (4, 10, 11).
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The state of the system is conveniently
measured by the dimensionless parameter
sinuosity

s=1L/C

where L is the length of the river along its
course between two points and € is the
shortest length between the same points.
The quantities L and € are measured in
units of average width, w. When the river is
straight, sinuosity has a minimum value of
1. In principle, no maximum value exists.
Sinuosity is related to the information con-
tent and symmetry of the system (5). Ox-
bow lakes have a finite length range, with a
minimum value of ~7 and a maximum of
~40w.

In the simulations (Fig. 1, A and B), the
river typically formed two coexisting do-
mains, one with consistently high sinuosity
(mean s ~ 3.5) and one with consistently
low sinuosity (mean s =~ 2.7). Because a
straight line is the most ordered state the
river can take (zero entropy, perfect axial
symmetry), the low-sinuosity regions repre-
sent a distinctly more ordered state than the
high-sinuosity regions (weak versus strong
asymmetry).

The low-sinuosity domains in Fig. 1, A
and B, formed as a result of a clustering of
cutoff events. Each cutoff has a tendency to
trigger other cutoffs in its vicinity by caus-
ing accelerated local change, and this may
generate a cluster of cutoffs in space and
time. Similarly, in natural rivers, successive
cutoffs occur only rarely with the same
spacing or at regular intervals, and so clus-
ters are formed.

When the simulated river was locally
straightened by cutoffs, the dynamics died
down to create a window of slow change
that persisted for awhile, before a gradual





