
drogen have squeezed it between the tiny 
chiseled faces of two opposed diamonds in a 
diamond-anvil cell. The idea was that the 
hydrogen molecules-pairs of protons bound 
by two electrons-would come so close to 
each other that the bonding electrons would 
be able to S ~ D  from molecule to molecule, 
forming the sea of unbound electrons that is 
characteristic of a metal. 

The diamond-anvil specialists kept their 
hydrogen cold and solid, at times within a 
few degrees of absolute zero, reasoning that 
low temperatures would make the hydrogen 
easier to confine between the diamonds and 
the results easier to interpret. But while dia- 
mond anvils did succeed in squeezing hydro- 
gen above pressures of 2 million atmospheres 
( 2  megabars), the signs of metalization were 
suggestive but far from convincing (Science, 
30 March 1990, p. 1545). 

"We did something different," says Nellis: 
heating the hydrogen to thousands of degrees 
kelvin. Heat is an inevitable byproduct of 
their strategy for generating high pressures: 
firing metal plates from a room-size gun at up 
to 25,000 kilometers per hour into stationary 
target samples. In fact, Nellis and his col- 

Showing its metal. Metallic hydrogen prevails 
out to 88% of Jupiter's radius. 

leagues had to use a target design that kept 
the temperature of their shocked hydrogen 
from rising too high and turning it into an 
ionized plasma. 

They placed a thin layer of liquid hydrogen 
between two sapphire plates so that rather 
than delivering one strong shock to the hy- 
drogen, the apparatus would generate a weaker 
shock wave that would bounce back and forth 
between the plates. The reverberating wave 
would drive up the pressure bit by bit to as 
much as 1.8 megabars while heating the 
sample to only a few thousand degrees kelvin. 

Nellis and his colleagues didn't expect 
that this experiment would metalize hydrogen. 
Theory had been pointing to a metalization 
pressure of 1.5 to 3 megabars, says Nellis- 
and that was for solid hydrogen at absolute 
zero. Hot, fluid hydrogen would presumably 
be even harder to metalize. Instead, his group 

iust wanted to exulore the electrical behav- 
ior of fluid hydrogen under typical Jovian 
conditions. "All the hydrogen at megabar 
pressures in nature is at high temperature, as 
in Jupiter and Saturn," he explains. 

But when Nellis and his colleagues exam- 
ined records of conductivity from their ex- 
periments, "we were actually surprised to find 
we had in fact metalized" hydrogen, says Nellis. 
At pressures of between 0.9 and 1.4 megabars 
while the hydrogen was still in its molecular 
form--conductivity surged by four orders of 
magnitude to a level typical of a melted alkali 
metal like cesium at 2000 K. Apparently, 
says Nellis, metalization in the solid, but not 
the liauid, state is inhibited because the solid 

L ,  

material can accommodate increasing pressures 
by rearranging its crystal structure and adjust- 
ing itself in other ways short of metalizing. 

The result implies, says Nellis, that "you 
get conducting material much closer to the 
surface" ofJupiter than was thought. Theorists 
had put the outer edge of the metallic hydro- 
gen zone at a depth of about 17,000 kilome- 
ters, but the new result brines it uu to 8500 " .  
kilometers. The closer the magnetic dynamo 
of churning metallic hydrogen comes to the 
surface, the stronger the magnetic field will be 
there. As a result, the new measurement could 
help explain a long-standing puzzle: why 
Jupiter's magnetic field is so strong. Jupiter's 
field is powerful enough, for instance, to fend 
off the wind of charged particles from the sun 
out to a distance as far as 100 times its own 
radius; Earth manages just 10 times its radius. 

Planetary physicist David Stevenson of 
the California Institute of Technology sees 
other possible implications for both Jupiter 
and Saturn. Because the solubility ofhelium, 
another Jovian constituent, is much lower in 
metallic hydrogen than in ordinary, insulat- 
ing hydrogen, the shock-compression results 
would also increase the volume of the planet 
in which helium would come out of solution 
to form "raindrops," he notes. That would 
help explain the excess heat coming from 
Jupiter's interior, because the drops would 
release gravitational energy as they fell. 

Stevenson adds that "we mav need to be 
concerned about magnetic field influences 
on fluid motions out to a greater radius than 
some people previously supposed." Besides 
generating the magnetic field, the churning 
metallic hydrogen flows under the influence 
of the field. The closer the metallic region 
extends to the surface, the more likely it is to 
pass some of its momentum on to shallower, 
nonconducting layers, which in turn would 
influence the seething of Jupiter's dense at- 
mosuhere. So it's conceivable, Stevenson 
says, that about the same time as Nellis and 
his colleagues were making metallic hydro- 
gen on Earth, the Galileo probe was feeling 
its effects too, when strong winds buffeted 
the probe well below the visible clouds. 

-Richard A. Kerr 

MATHEMATICS 

Fermat Prover 
Points to Next 
Challenges 
W i t h  the proof of Fermat's Last Theorem now 
on the books, what's left for number theorists to 
do? Plenty, says Andrew Wiles, the Princeton 
University mathematician who knocked off 
mathematicians' favorite unsolved problem. 
In a series of talks earlier this year at the joint 
meetings of the American Mathematical So- 
ciety and the Mathematical Association of 
America in Orlando, Florida, Wiles laid out a 
strine of related auestions that remain unan- " 

swered. Among them are problems that are 
mathematically more significant-if less no- 
torious-than Fermat's famous challenge. 

"The ~roblems that remain unsolved are 
very natural ones," says Wiles, having to do 
with the properties of the simple algebraic 
equations that are ubiquitous in mathematics. 
Like questions about the physics of water or the 
basis of gravity, they concern an everyday me- 
dium-and are exceptionally hard to answer. 
"What's so beautiful for mathematicians is that 
the questions are so simple and natural, and yet 
the answers are so demanding-and so reward- 
ing," he says. And for one of the most impor- 
tant of those problems the rewards may now 
be much closer, as Wiles explained in his talk. 

The question has to do with elliptic curves, 
which were at the heart of Wiles's attack on 
Fermat's problem. Elliptic curves consist of 
solutions of cubic equations in two variables, 
typically of the form y' = 9 + Ax + B, with 
inteeer coefficients A and B. Fermat himself 

u 

was interested in finding rational numbers that 
could solve such equations-r showing that 
none exist. Indeed, they may be responsible for 
the Last Theorem's notoriety. Fermat's famous 
marginal comment that he had a proof for his 
own theorem-that the equation xn + yn = zn 
hasno solutionsforngreater than 2-may have 
been based on an overestimate of the power of 
his methods for studying cubic equations. 

Now Wiles's proof of Fermat's Last Theo- 
rem has given theorists new tools for attacking 
the central-and still unsolved--challenge of 
elliptic curves: taking an arbitrary cubic equa- 
tion and finding all of its rational solutions. 
"We don't know how to do that," notes Wiles. 
Although theorists have come up with meth- 
ods that work for particular elliptic curves- 
Fermat himself, for example, proved that the 
equation y? = 2 - x has exactly three solutions 
( y  = 0 and x = 0,1 ,  and-1)-they don't have 
a general method that is guaranteed to work 
on everv cubic eauation. "There are lots and 
lots of iiteresting;hings [about elliptic curves] 
that seem to be true but we can't prove," notes 
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2 !. A Proof to Please Pythagoras .,,: .= . - , 4  : + s ' c  :1 
Number theorists wGldi;lg the tools 
that Princeton University mathema- .A / / tician Andrew Wiles used to prove 
Fermat's Last Theorem are now hop-. ' 

ing to clear up some modem mysteries ' (25/4,35/8) 
surrounding the objects called elliptic 2 
curves (see main text). If they suc- 
ceed, notes Wiles, they will also get 1 $ \  

-20 

the answer to a simple-sounding ques- A - 

tion that predates even the Fermat 3 -40 

theorem-aproblem Pythagoras might Rational approach. A point on the elliptic curve 
have pondered. 4 = 4- 36x (right) shows that the integer 6 is 
ne question is whether or not a the area of a right triangle with rational sides. 

h 'a : 
beginnings ofa strategy, however. First, 
each one has either no rational solu- 
tions with nonzero y or infinitely many 
such solutions. Second, because these 
equations have the property known as 
complex multiplication, what is called 
the Coates-Wiles theorem applies: If a 
curve has infinitely many solutions, an 
associated function called the L-func- 
tion takes the value 0 at a special 
point. If the L-function's value is 
something other than 0, the corre- 
sponding curve has no solutions, 

given integer can possibly be the area of which means N is not the area of a right 
a right triangle, all three of whose sides are rational. The number triangle with rational sides. 
6, for example, is the area of the familiar 3-4-5 right triangle. Less In 1983, Jerry Tunnell, then at Princeton University, provided 
obvious is the number 5: It's the area of the 312-2013-4116 right a quick and easy way to perform this test. While complicated to 
triangle. Still less obvious is the fact that 1,2,3, and 4 are not the state (as Wiles puts it, "No one could possibly have guessed this 
area of anv rieht trianele with rational sides. theorem"). Tunnell's formula reduces the evaluation of the L- 

~ u m b i r  theorists Fecognized long ago that the secret of this 
problem lies in the theory of elliptic curves. Each right triangle 
with rational sides and area N corresponds to a rational solution 
of a standard elliptic curve, the equation y2 = 2 - N2x. If a, b, 
and c are the sides and hypotenuse of such a triangle, then some 
slightly messy algebra shows that x = ( ~ 1 2 ) ~ ,  y = (aZ- b2)c/8 is a 
point on the elliptic curve--a solution to the equation. For 
example, the 3 4 - 5  triangle corresponds to the solution x = 2514, 
y = 3518 of the equation y2 = 9 - 36x. But number theorists still 
have no general method for deciding whether such an equation 
has rational solutions or not. 

The properties of the elliptic c w e s  y2 = 2 - NZx offer the 

. , 
function to a straightforward counting problem, easily computed 
for anv value of N. 

BU; while this method can rule out certain integers as the areas 
of right triangles with rational sides, it can't rule m others. That's 
because the Coates-Wiles theorem can't be reversed: No one has 
proved that every curve whose L-function falls to 0 has infiitely 
many rational solutions. With the new tools provided by Wiles's 
proof of Fermat's Last Theorem, however, number theorists can at 
least set their sights on such a proof, which would settle the right- 
triangle problem completely. Pythagoras, not to mention Wiles, 
would be thrilled. , c:;:, . : 

, ,- . - 6. 
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Joseph Silverman of Brown University. 
Even the first step toward understanding 

the equations-knowing whether an equa- 
tion has just a finite number of rational solu- 
tions or an infinite number of them--can be 
extremely difficult. Trial-and-error, compu- 
tational searching cannot decide the point: 
No matter how many (or few) solutions you 
do or don't find, there may or may not be 
infinitely many more. 

Number theorists do, however, have an 
unproven method for analyzing elliptic 
curves. In the early 1960s, Bryan Birch at 
Oxford Universitv and H.P.F. Swinnerton- 
Dyer at Cambridge University went out on a 
limb with a daring conjecture about the be- 
havior of elliptic curves. By computing many 
examples, they discovered a striking coinci- 
dence between the number of solutions to an 
elliptic curve and the behavior of an associ- 
ated analytic function known as an L-func- 
tion, which, roughly speaking, blends arith- 
metical information in the Mixmaster of cal- 
culus. In all the examples they looked at, if 
the curve had infinitelv manv solutions. then 
its associated L-function had the value 0 at a 
particular point, and vice versa. 

The discovery suggested a convenient 
way to tell whether or not an elliptic curve 

has an infinite number of rational solutions 
or only finitely many: Just evaluate its L- 
function at a particular fixed point and check 
whether you get 0 or not. Birch and 
Swinnerton-Dyer also found that they could 
extract additional clues to the solutions of an 
elliptic curve by studying the associated L- 
function around as well as at the special point. 

This structure of conjecture, however, is 
still waiting for the cement ofproof. Wiles had 
provided one bit of mortar in 1976, when he 
and his adviser, John Coates at Cambridge 
University, proved part of Birch and Swin- 
nerton-Dyer's original conjecture for one par- 
ticular class of elliptic curves-those with a 
special property known as complex multipli- 
cation. Among these curves, they showed, 
those with an infinite number of solutions 
always have an L-function that reaches 0 at 
the appropriate point. Coates and Wiles were 
not able to prove the converse, however- 
that every curve whose L-function is 0 at that 
point has an infinite number of solutions. 

More recently, Viktor Kolyvagin at the 
Steklov Institute in Moscow extended the 
Coates-Wiles theorem to a broader class of 
elliptic curves, known as modular curves. That's 
where Wiles's recent work comes in. In the 
course of proving Fermat's Last Theorem, 

Wiles showed that a large class of elliptic 
curves is indeed modular (Science, 2 July 1993, 
p. 32). The powerful techniques he intro- 
duced for dealing with elliptic curves have 
made number theorists optimistic that a proof 
that all elliptic curves are modular-an asser- 
tion known as the Taniyama-Shimura conjec- 
ture-may be close, an opinion no one would 
have hazarded 3 years ago, says Silverman. 

Thanks to Kolyvagin's result, a proof of the 
Taniyama-Shimura conjecture would estab- 
lish that everv ellintic curve with infinitelv , 
many solutions has an L-function that reaches 
zero at the appropriate point. It wouldn't 
prove that number theorists can always go 
safely in the opposite direction, however, and 
draw conclusions about a curve whose L-func- 
tion reaches 0. "The other direction is much 
harder," opines Wiles. "My hunch is that us- 
ing these modular curves is going to be impor- 
tant" for completing the proof, he says. 

But maybe more is needed. "When you're 
faced with ignorance," says Wiles, "it's very 
hard to know whether we've got the tools 
now and the answer is around the corner, or 
whether we need tools that are completely 
different." Even after 350 years, "we are far 
from understanding elliptic curves." 

-Barry Cipra 
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