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tained at discrete cellular locations through 
their interaction with targeting proteins (1). 
Enzymes may be positioned in close proxim­
ity to specific substrates, which then can be 
efficiently modified in response to the appro­
priate signals. Evidence supporting this mod­
el has shown that protein tyrosine kinases 
and phosphatases couple to downstream cy­
toplasmic enzymes through adapter proteins 
that contain SH2 and SH3 domains (2). 
Serine-threonine kinases and phosphatases 
are also maintained by scaffold proteins or 
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protein Sterile-5 (STE5) provides a frame­
work to order successive members of a yeast 
mitogen-activated protein kinase cascade, 
thereby permitting sequential activation of 
each enzyme in the pheromone mating re­
sponse (3). In neurons, PKA and CaN are 
both localized to postsynaptic densities 
(PSDs) by association with AKAP79, which 
positions both enzymes close to key neuronal 
substrates (4). Because other neuronal sig­
naling enzymes are present at the PSD (5), 
we investigated their potential to associate 
with the anchoring protein AKAP79. 

PKC, a family of serine-threonine ki­
nases, is tethered to the PSD through asso­
ciation with binding proteins (6). We used 
a solid-phase binding assay (overlays) with 
PKC as a probe (7) on bovine brain extracts 
(8) to detect several PKC-binding proteins, 
including a protein that migrated with the 
same mobility as a prominent RH-binding 
protein of 75 kD (9). This band corresponds 
to AKAP75, the bovine homolog of 
AKAP79 (10), indicating that the anchor­
ing protein could bind both RII and PKC. 
Indeed, recombinant AKAP79 bound to 

Coordination of Three Signaling Enzymes by 
AKAP79, a Mammalian Scaffold Protein 
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Multivalent binding proteins, such as the yeast scaffold protein Sterile-5, coordinate the 
location of kinases by serving as platforms for the assembly of signaling units. Similarly, 
in mammalian cells the cyclic adenosine 3',5'-monophosphate-dependent protein ki­
nase (PKA) and phosphatase 2B [calcineurin (CaN)] are complexed by an A kinase 
anchoring protein, AKAP79. Deletion analysis and binding studies demonstrate that a third 
enzyme, protein kinase C (PKC), binds AKAP79 at a site distinct from those bound by PKA 
or CaN. The subcellular distributions of PKC and AKAP79 were similar in neurons. Thus, 
AKAP79 appears to function as a scaffold protein for three multifunctional enzymes. 
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PKC in the presence of Ca2+ and phospha- 
tidylserine (Fig. 1A). The a, PI, and PI1 
isoforms of PKC interacted with AKAP79, 
whereas other signaling enzymes that are 
associated with the PSD, such as Ca2+- 
calmodulin-dependent protein kinase I1 
and the type I phosphatase, did not bind the 
AKAP (1 I ). Phosphorylation of AKAP79 
by PKC had no qualitative effect on bind- 
ing (Fig. 1, A and B). This result suggests 
that the AKAP binds in a different manner 
from other PKC-substrate- binding proteins 
such as MARCKS (myristoylated alanine- 
rich C kinase substrate) and y-adducin, for 
which phosphorylation regulates associa- 
tion with PKC (1 2). We mapped the PKC- 
binding region by screening a family of 
AKAP79 fragments (Fig. 1C) (1 3). Frag- 
ments encompassing the first 75 residues of 
AKAP79 bound PKC, whereas COOH-ter- 
minal fragments containing the RII- and 
CaN-binding regions did not (Fig. ID). 
These data imply that PKC binds to 
AKAP79 at a site that is distinct from those 
bound by RII and CaN (4, 14). 

Because basic and hydrophobic regions 
are determinants for binding of certain pro- 
teins to PKC (15), we focused on a region 
located between residues 31 to 52 of 

' AKAP79 (Fig. 2A). A peptide encompass- 
ing this region specifically blocked the in- 
teraction of AKAP79 with PKC in the over- 
lay assay (Fig. 2B) but did not affect RII 
binding to the AKAP (Fig. 2C) (16). Con- 
versely, the RII anchoring inhibitor peptide 
[AKAP79(390-411)] did not affect PKC 
binding (Fig. 2B) but did block interaction 
with RII (Fig. 2C). This result indicates that 
residues 31 to 52 represent the principal 
determinants for PKC binding. Many ki- 
nases or phosphatases bound to anchoring 
proteins are maintained in an inactive state 
(1, 4). Accordingly, recombinant AKAP79 
protein inhibited PKC activity (1 7) with a 
half-maximal inhibition (IC,,) of 0.35 + 
0.06 pM (n = 3) (Fig. 2D). In addition, the 
AKAP79 peptide (residues 31 to 52) and a 
recombinant AKAP79 fragment (residues 1 
to 75) inhibited PKC activity with IC50 
values of 2.0 + 0.6 pM (n = 4) and 1.6 + 
0.3 pM (n = 4), respectively (Fig. 2D). In 
contrast, AKAP79(31-52) did not inhibit 
the activity of the catalytic subunit of PKA 
(Fig. 2D) (18). Inhibition of PKC activity by 
AKAP79(31-52) was mixed, with an appar- 
ent inhibition constant (Kt) of 1.41 2 0.28 
pM (n = 3) (Fig. 2E). The secondary plot of 
the Michaelis constant divided by the max- 
imal velocity (Km/Vm,,) as a function of 
inhibitor concentration was nonlinear, sug- 
gesting binding at more than one site (Fig. 
2E, inset). Preincubation of AKAP79(3 1- 
52) with excess calmodulin prevented inhi- 
bition of PKC activity (1 9). We propose that 
PKC is localized and inhibited by AKAP79 
in a Ca2+- and phosphatidylserinedepen- 

1 590 

dent manner, and additional signals, such as 
Ca2+-calmodulin, may be required to release 
the enzyme. 

The interaction of PKC and AKAP79 
was independently confirmed by coprecipi- 
tation of the complex from human embry- 
onic kidney (HEK) 293 cells in the pres- 
ence of exogenous recombinant AKAP79 

(Fig. 3A) (20). PKC was not coprecipitated 
with AKAP79 in the absence of exogenous 
AKAP79 probably because of low endoge- 
nous amounts of AKAP79 in the lysates 
(Fig. 3A). Similar results were obtained 
when AKAP79 was added to bovine brain 
extracts or incubated with purified PKC-PI1 
(21 ) in vitro in the presence of Ca2+ and 

Fig. 1. Binding of PKC to 
AKAP79. (A) PKC binds &?qq &' 
nonphosphotylated and ,Q ,dV ,Q ,dV 
phosphotylated AKAP79 $ eQ 
(lanes 1 and 2, respn- A p'&O B B$" C 
tively). Purified recombi- ,,,- 0 ., ;-75 

nant His-Tag AKAP79 (2 137- . .. 
427 pg) was phosphorylated 

by partidly purified PKC 71- 1 1 0 8  
1 1 5 0  

(1 00 ng) in a reaction mix- ' 5  I- 427 
108-1427 ture containing 50 mM 43- 

tris-HCI (pH 7.4) ph0s- 31- 1 2  3 4 5 6  
phatidylserine (1 00 
pg/ml), 1 mM EGTA, 1.2 1 2  1 2  

mM calcium, 5 mM magnesium chloride, and 1 mM DTT in the absence (lane 1) or presence (lane 2) of 25 
pM [y-32P]ATP for 90 min at 30°C. Samples were separated on a 10% SDSpolyacrylamide gel electro- 
phoresis (PAGE) gel, transferred to nitrocellulose, and assayed for PKC binding by overlay analysis (7). (B) 
Autoradiograph showing PKC phosphotylation of AKAP79. (C) Schematic diagram showing the location of 
the AKAP79 deletion mutants (13). (D) Purified fragments (2 pg of 1-75,l-108, and 1-1 50 -79 and 1 
pg of 75-427,108-427, and full-length AKAP79) were separated by SDS-PAGE on a 15% gel, transferred 
to nitrocellulose, and assayed for binding by PKC overlay. Molecular size markers are indicated on the right 
in kilodaltons. 

CaN-binding 
B C 

site 

0 2.5 5 7.5 10 -0.1 0 0.1 0.2 
Inhibitor concentration (pM) 1lEGF receptor peptide (pM) 

Fig. 2. Inhibition of PKC actkiity by AKAP79. (A) Schematic representation of AKAP79 showing putative 
binding sites for PKC, CaN, and RII. The amino acid sequence for residues 31 to 52 is indicated (29). (B) 
Recombinant AKAP79 was blotted and PKC overlays (7) were done in the absence (lane 1) and presence 
of either 1.5 pM AKAP79(31-52) (lane 2) or 1.5 pM RII-anchoring inhibitor peptide AKAP79(390-412) 
(lane 3) with -1 2.5 nM PKC. (C) 32P-Rll (1 00 cpm/pl) overlays (1 6) were done under the same conditions 
as in (B). (D) Dose-response curve of PKC activity in the presence of recombinant AKAP79 (A), 
AKAP79(31-52) (+), and residues 1 to 75 of recombinant AKAP79 (0). AKAP79(31-52) did not inhibit 
PKA activity (e). Values shown are the mean + SEM (n 2 3). (E) Lineweaver-Burk plot of PKC phospho- 
tylation in the absence of inhibitor peptide (+) and in the presence of 1.5 pM (O), 3 pM (O), and 4.5 pM 
(A) AKAP79(31-52) peptide. Inset shows the secondaty plot of KJV,, as afunction of AKAP79(31-52) 
concentration and the apparent K, value. Values shown are the mean 2 SEM (n = 3). PKC and PKA were 
assayed as described (1 7, 18). 
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phospholipid (1 9). Further evidence for the 
association of PKC and AKAP79 was pro- 
vided by double-immunofluorescence stain- 
ing (22) of HEK 293 cells overexpressing 
AKAP79 (23). PKC and AKAP79 exhibit- 
ed limited staining at the cell periphery in 
mock-transfected cells (Fig. 3B), but the 
staining pattern was markedly enhanced in 
transfected cells, demonstrating that over- 
expression of AKAP79 increases PKC tar- 
geting to the periphery of the cell (Fig. 3B). 
Collectively, our data indicate that PKC 
binds AKAP79, and it is likely that this 
complex occurs in vivo. 

AKAP79 may act as a signaling scaffold 
for the subcellular targeting of PKA, CaN, 
and PKC. To  demonstrate that these en- 
zymes bind to AKAP79 in mammalian 
cells, we isolated ternary complexes from 
bovine brain. We used affinity purification 
of the R subunit of PKA on adenosine 
3',5'-monophosphate (CAMP)-agarose to 

copurify AKAP75 (Fig. 4A) (24). If PKC 
were bound to the complex via the AKAP, 
then we would expect PKC to be present 
after elution of bound proteins with CAMP. 
Immunoblotting analysis demonstrated that 
PKC was indeed present (Fig. 4B), showing 
that RII and PKC can bind simultaneously 
to AKAP75. In separate experiments, a ter- 
nary complex of CaN, PKC, and AKAP75 
was isolated from bovine brain extracts 
by immunoprecipitation with antibodies 
against CaN A subunit (25). Immunoblot- 
ting demonstrated that the precipitated 
complex contained PKC (Fig. 4C), whereas 
control experiments with nonimmune se- 
rum were negative. This result indicated 
that CaN and PKC can bind to the AKAP 
simultaneously; therefore, different combi- 
nations of PKA, CaN, and PKC can bind 
the AKAP in bovine brain. Isolation of a 
quaternary complex was not feasible be- 
cause of the low stoichiometry of binding 

Fig. 3. Cellular association and colocalization of PKC and AKAP79. (A) Coprecipitation of AKAP79 and 
PKC from HEK 293 cell lysates (20). Lysates (1.2 mg) were incubated in the presence (lane 1) or absence 
(lane 2) of exogenous recombinant AKAP79 (2 kg) and immunoprecipitated with a polyclonal antibody to 
AKAP79 (2503). Precipitates were blotted and probed with a monoclonal antibody to PKCa (M4) (7). (B) 
Stable HEK 293 cell lines expressing pcDNA3 (upper panels) and AKAP79 (lower panels) were stained 
with antibodies to PKC (M4) (panels 1 and 4) or AKAP79 (2503) (panels 2 and 5) and analyzed by confocal 
microscopy (22). Double staining for PKC and AKAP79 is displayed by superimposing the images (panels 
3 and 6). 

Fig. 4. The AKAP79 signaling 
scaffold. (A and B) The R subunit 
of PKA was purified from bovine 
brain by affinity chromatography 
with CAMP-agarose (24). Protein 
blots were probed with 32P-Rllu 
to detect AKAPs (A) or with a 
monoclonal antibody to PKCa 
(M4) (B). (C) CaN from bovine 
brain extracts was immunopre- 
cipitated with affinity-purified an- 

c 91 r j f  f z i  

f PKCa 

+IOG 
45- "'I 

tibodies to the CaN A subunit 
(25). Protein blots were probed with a 
monoclonal antibody to PKCa (M4). (D) 
Confocal microscopy (22) of neonatal rat 
hippocampal neurons stained with either 
antibody to -79 (2503) (panel 1) or a 
and p PKC-specdic antibody (M7) (panel 2). 

for each enzyme to the AKAP (4, 26) and 
the probable transient nature of the pro- 
tein-protein interactions. 

AKAP79 appears to be a mammalian 
scaffold protein that coordinates the loca- 
tion and activity of three prominent signal- 
ing enzymes. Although AKAP79 function- 
ally resembles the yeast scaffold protein 
STE5, there are differences between the 
two signaling scaffolds. The AKAP79 com- 
plex is likely to respond to three distinct 
activation signals, whereas a single up- 
stream event, the activation of STEZO, is 
sufficient to transduce signals from one ki- 
nase to the next in the STE5 scaffold (3). In 
addition, the AKAP signaling complex is 
targeted to sites near the postsynaptic mem- 
brane in neurons. Immunoflourescence 
studies demonstrate that PKC and the 
AKAP are concentrated at sites below the 
plasma membrane at the cell body and in 
dendritic bundles of hippocampal neurons 
(Fig. 4D). The dendritic staining pattern is 
consistent with the colocalization of both 
proteins at the PSD. Targeting to the PSD 
would ensure that each enzyme in the sig- 
naling complex is well placed to receive 
signals transduced across the synapse and 
that each enzyme is colocalized with specif- 
ic substrate ~roteins. Potential substrates 
include a-amino-3-hydroxy-5-methyl-4- 
isoxazoleproprionic acid (AMPA)-kainate 
and Ca2+ channels, which are modulated 
by anchored PKA, and N-methyl-D-aspar- 
tate (NMDA) receptors, which are activat- 
ed by PKC and attenuated by CaN (27). 
PKC may also modulate the targeting of 
certain NMDA receptor subtypes to the 
postsynaptic membranes (28). Thus synap- 
tic signaling events appear to be coordinat- 
ed, and we propose that this occurs through 
a modular scaffold protein, AKAP79, that 
anchors two second messenger-regulated 
kinases and one phosphatase. 
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Similarities Between Initiation of V(D)J 
Recombination and Retroviral Integration 

Dik C. van Gent, Kiyoshi Mizuuchi, Martin Gellert* 

In the first step of V(D)J recombination, the RAGl and RAG2 proteins cleave DNA between 
a signal sequence and the adjacent coding sequence, generating a blunt signal end and 
a coding end with a closed hairpin structure. These hairpins are intermediates leading to 
the formation of assembled antigen receptor genes. It is shown here that the hairpins are 
formed by a chemical mechanism of direct trans-esterification, very similar to the early 
steps of transpositional recombination and retroviral integration. A minor variation in the 
reaction is sufficient to divert the process from transposition to hairpin formation. 

Funct ional  i~n~nunoglobul in  and T cell re- 
ceptor genes are assembled during verte- 
brate lymphoid development from separate 
gene segments. This D N A  rearrangement, 
called V(D)J  recomb~nation, takes place a t  
recombination signal sequences (RSSs) 
that specify the  border of the  coding seg- 
ments (1 ) .  Double strand breaks (DSBs) a t  
the  RSS border depend o n  expression of the  
RAGl and RAG2 genes (2)  and are proba- 
bly intermediates in this recombination re- 
action (3, 4). After DSB formation, a pair 
of signal ends or coding ends is coupled to  
form a signal joint or coding joint, respec- 
tively. These joining reactions require sev- 
eral genes that are also involved in general 
DSB repair (4). 

W e  recently developed a cell-free assay 
in  which specific cleavage a t  RSSs requires 
only the  R A G l  and R A G 2  proteins (5, 6) .  
A n  oligonucleotide containing one RSS 
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serves as a substrate and is cut efficiently. A 
D N A  species containing a nick in the top 
strand (as drawn in Fig. 1 )  a t  the  border of 
the  RSS and the  flanking ("coding") se- 
quence was found to be the  precursor to a 
DSB. T h e  products of the  cleavage reaction 
are a blunt, 5'-phosphorylated signal end 
and a coding end with a hairpin structure. 
These are the  same species detected in re- 
combinationallv active cells. 

Formation i f  the  new phosphodiester 
bond at the  tip of the  hairpin requires en- 
ergy. Because no  adenosine triphosphate 
( A T P )  or other high-energy cofactor is 
present in the  cleavage reaction, the  energy 
is likely to be derived from one of the  
broken phosphodiester bonds. T h e  energy 
of the bond broken in  the  initial nicking 
reaction does not appear to  be conserved: 
D N A  substrates with a preexisting nick a t  
this position are efficiently converted into 
hairpins (6).  Thus, the  energy of the  phos- 
phodiester bond in the  bottom strand op- 
posite the  nick must be conserved, either 
through a covalent protein-DNA interme- 
diate or by direct trans-esterification. A 
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