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Structure and Evolution of Lithospheric Slab 
Beneath the Sunda Arc, Indonesia 

Sri Widiyantoro* and Rob van der Hilst? 

Tomographic imaging reveals seismic anomalies beneath the Sunda island arc, Indonesia, 
that suggest that the lithospheric slab penetrates to a depth of at least 1500 kilometers. 
The Sunda slab forms the eastern end of a deep anomaly associated with the past 
subduction of the plate underlying the Mesozoic Tethys Ocean. In accord with previous 
studies, the lithospheric slab was imaged as a continuous feature from the surface to the 
lower mantle below Java, with a local deflection where the slab continues into the lower 
mantle. The deep slab seems to be detached from the upper mantle slab beneath 
Sumatra. This complex slab structure is related to the Tertiary evolution of southeastern 
Asia and the Indian Ocean region. 

T h e  tectonic evolution of island arcs and 
lithospheric fragments in so~~theasterll  Asia 
is complex because of the interaction of 
several lithospheric plates (Fig. 1A)  (1-3). 
Without sufficient land-based paleomag- 
netic measurements and information about 
the structure of the deep Earth, the relative 
plate motion in this complex plate bound- 
ary zone has often been reconstr~~cted from 
data on ocean-floor spreading of the major 
oceanic plates using geometrical fits on a 
sphere (4). Seismic imaging provides infor- 
mation about Earth's interior structure that 
helps understanding of the geological histo- 
ry. Here, we focus on  the northward sub- 
duction of the complex Indo-Australian 
Plate along the Sunda arc (from northwest- 
ern Sumatra, along Java, to Flores). 

In the east, continental lithosphere 
(Australia) has been colliding with the 
Banda arc since about 5 lnillioll years ago 
(Ma), whereas further to the west, the oce- 
anic part of the Indo-Australian Plate sub- 
ducts beneath the Java trench. The age of 
the subducting ocean floor varies from 50 to 
90 Ma along Sumatra to 100 to 135 Ivla and 
140 to 160 Ma near Java and Flores, respec- 
tively. The lateral variation of the nature 
and age of the subducting plate influences 
the style of deformation and seismicity 
along the Sunda arc (5). Earthquakes with 
focal depths of up to 670 km occur in the 
steeply dipping (-60") seismic zone be- 
neath the Java arc, but there is a seismic gap 
between depths of 350 and 500 km (6-8). 
Beneath Sumatra, the seismic zone dips 
-30" to 45", but there are no earthquakes 
deeper than 300 km, which has been attrib- 
uted to the relatively young age of sub- 
ducted lithosphere (8,  9 ) .  

W e  inferred from the tomographic im- 

ages that the slab is continuous across the 
seismic gap beneath Java and that there is a 
pronounced seismic anomaly in the lower 
mantle. This is in good agreement with 

u 

conclusions based on previous tomographic 
studies ( 10, 1 1 ), even though different data 
sets and reference Earth models were used, 
leaving little doubt that the deep Java slab 
is a realistic structural feature. In addition, 
we ii) nresent evidence for a lower mantle 

, , A  

anomaly beneath Sumatra and for the de- 
tachment of the upper mantle slab from the 
deeper slab, (ii) explore the substantial lat- 
eral variation In slab morphology, and (iii) 
discuss the geolog~cal evolution of the 
lithospheric slab, which seems to be more 
complex than that of the western Pacific 
subduction zones 11 2 .  13 ). , ,  , 

We investigated mantle structure be- 
neath the Indonesian region (Fig. 1A) by 
means of tomographic images produced by 
linearized inversion of travel-time data of 
direct P phases and the surface-reflected 
depth phases pP and pwP (14, 15). The 
radiallv stratified iasb91 model (1 6 )  was . . 
used as a global refeience for the seismic 
velocities and for the tracing of the ray 
paths. The inclusion of the depth phases 
improved the sampling of mantle structure 
away from the seismic zones, in particular 
beneath the back arc regions (Fig. 1, A and 
B),  and provided constraints on  earthquake 
focal depth. The hypocenters and phase 
data used were derived from the reprocess- 
ing of the entire data catalog of the Inter- 
national Seismological Centre, which in- 
volved nonlinear hypocenter relocation 
and ~ h a s e  reldentification (17). This data . , 

set was augmented by data from the Aus- 
tralian Skippy project (18). W e  used about 
1.3 million data, constituting a linear sys- 
tem of about 275,000 equations (19), from 

Research School of Earth Sciences, Australian National nearly 17,000 earthquak;s within the study 
University, Canberra, ACT 0200, Australia. area recorded at one or more of over 2000 
-On leave from the Department of Geophysics, Bandung seismological stations worldwide. Following - - 
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by heterogeneity elsewhere. For the  param- 
eterization of the  model space by means of 
local basis functions, we used blocks with 
lateral dilnensions of l o  by l o  within the  
study region (Fig. 1B) and a p p r o x i ~ n a t e l ~  
equal area blocks of 5" by 5" a t  the  equator 
(Fig. 1C) .  

From our inversions, we infer that the 
subducted slab is defined by a laterally con- 
tinuous region of higher than average P- 
wave velocity in the  upper mantle, transi- 
tion zone, and lower mantle (Fig. 2). In  the  
upper mantle (Fig. 2A),  the  image of the  
slab parallels the  present-day Sunda arc and 
the  Molucca collision zone. In  the  mantle 
transition zone (Fig. 2B), a high-velocity 
slab is inferred beneath the Java and Banda 
arcs (note  the  broadening in map view of 
the  slab beneath the Banda arc) but not 
beneath Sumatra. A prominent feature in 
the  lower mantle images is the elongated 
structure of high P-wave velocity trending 
east-west over a distance of -2500 km from 
below the  northwestern tip of Sumatra to 
below the  Philippines (Fig. 2C). From our 
global model (15), we infer that this struc- 
ture forms the easternmost part of a 
-10,000-km-long anomaly that extends 
fro111 beneath southern Asia to the  eastern 
Mediterranean, where it connects to the  
deep anomaly beneath the  Aegean Sea 
(20).  This large-scale structure may be rem- 
nant  slab of the subducted Izangi Plate that 
underlaid the Ivlesozoic Tethys Ocean. 

W e  investigated the  reliability of the  
images with various resolution tests (21 ). 
As an  example, we discuss the  use of a 
model slab designed specifically for the  as- 
sessment of the  lower mantle slab and the  
complex structure beneath Sumatra. In the  
upper mantle, the  model slab is character- 
ized by a narrow zone of high selslnic veloc- 
ity along the  island arcs (Fig. 2D, inset); in 
the  transition zone, positive velocity anom- 
alies were assigned to the  mantle beneath 
Java and Banda, leaving a gap beneath 
Suluatra (Fig. 2E, inset); and in the  lower 
mantle, the model slab consists of an  east- 
west-trending high-velocity anomaly (Fig. 
ZF, inset). From this artificial model, we 
comp~lted synthetic data using the  same 
path coverage as in the inlrersion of report- 
ed phase data and added random errors. 
Subsequently, we inverted the  synthetic 
data and compared the output with the  
known model slab. T h e  result (Fig. 2, D 
through F) demonstrates that the  main fea- 
tures of the  model slab are adequately re- 
solved froin the  noisy data. Locally, uneven 
salnpling produces spurious features in the  
images. In  the  mantle region of our interest, 
the  amplitude of this undesirable structure 
is less than 10% of that of the  m ~ '  in struc- 
tures and is therefore not  visible in Fig. 2, D 
through F. Assuming that the  data contain 
enough structural signal, we conclude from 

this and other tests that the  sampling by P- 
and pP-wave paths is s~lfficient to  map 
structural features with lateral di~nensions 
of more than 150 and 300 km in the  uooer 

A L 

and lower mantle, respectively, and that 
image distortion owing to  uneven sampling 
is too small to invalidate our conclusions 
based o n  the  large-scale structure. 

T h e  co~nplexity of the  inferred slab struc- 
ture is f~lrther illustrated by vertical sections 
across the Sunda and Banda arcs (Fig. 3) .  
Beneath the western end of the curved 
Banda subduction complex, the  dip of the 
high-velocity ano~naly decreases abruptly in 
the transition zone (Fig. 3A) ,  in agreement 
with the observed seismicity within the slab 
(6, 22). Further west, the Indo-Australian 
Plate dips steeply beneath the Java arc and is 
only partially outlined by a seismic zone (Fig. 
3, B and C). In  the seismic gap, between 350 
and 500 km in depth, we detected higher 
than average seismic velocities with slnall 
amnlitudes. W e  tested whether this reduced 
signature of the slab is significant by invert- 
ing synthetic, noisy data computed from 
model slabs that are either continuous or 
discontinuous across the seismic gap. These 
inversions indicated that the lava slab is 
probably continuous and that the a~npl i t~lde  
reduction in the seismic gap may be realistic, 
which may suggest a thinning or "necking" 

of the Java slab (23). T h e  Java slab seems to 
deflect in the uppermost lower mantle, and 
the continuation of flow to  even larger 
depths is offset to  the  north (Fig. 3, B and 
C ) .  T h e  kink in the slab gradually decreases 
toward the west, and the lower mantle slab is 
almost vertically below the northwestern tip 
of Sumatra (Figs. 2 C  and 3D).  T h e  detection 
of a positwe velocity anomaly in the  lower 
mantle beneath Sumatra (Fig. 3D)  suggests 
that the deep part of the slab is detached 
fi-o~n the seislnoeenic slab. Examination of 

u 

anomaly maps for different depth intervals 
suggests a northwestward increase of the  
deoth ranee in which the fast slab is absent - 
because of the  decrease of the depth to the 
leading edge of the  upper mantle slab. T h e  
precise geometry of the  detachment zone 
cannot, however, be established concl~~sively 
from the images. - 

T h e  three-dimensional shape of the  
Sunda slab as inferred from Figs. 2 and 3 is 
summarized in Fig. 4. Assuming that this 
interpretation is correct, we now discuss a 
plausible scenario that relates the  three- 
dimensional slab structure-in particular, 
( i)  the slab in the  lower mantle, ( i i)  the  
kink in the  slab, iiii) its lateral variation. 
and (iv) the  slab detachment beneath 
Sumatra-to the  geological history of the  
arc system. 

I : INDO-AUSTRALIAN 
IW PLATE I 

Fig. 1. (A) Seismicity map of the Indonesian region. Solid lines depict the position of cross sections 
displayed in Fig. 3. Fat dashed lines indicate major plate boundaries after NUVEL-1 by DeMets eta/. (31). 
Thln dashed lines indicate the study area. Arrows indicate the directon of plate moton relative to the 
Eurasian Plate. Small dots depict epcenters of earthquakes used In this study (1 7). Abbreviations: MCZ, 
Molucca collis~on zone; PNG, Papua New Guinea. (B) Surface reflection points of p P  and pwP waves 
(dots). ThepPandpwP waves initially propagate upward from the source and are reflected at the land-air 
and water-ar nterfaces, respectvely. to distant receivers, In the absence of seismolog~cal statons and 
shallow events in the back arc regions, depth phases sample mantle structure beneath these regions 
better than direct P waves. The grid of nonoveriapplng blocks of hor~zontal dlmenslon 1 " by 1 " depicts the 
parameterizaton used inside the study regon. (C) Global parameterization used outside the volume 
under study. We used approximately equal area blocks of 5" by 5" at the equator. 
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The evolutionary history of the large 
tectonic units in the Indian Ocean region is 
known from sea-floor spreading isochrons, 
but the movement of smaller blocks within 
the complex plate boundary zone is not well 
constrained. Parts of present-day Indonesia 
probably rifted from northeastern Gond- 
wana and accreted in Eurasia during the 
Late Jurassic (24). The time of initiation of 
northward subduction of Tethyan Ocean 
floor (Izangi Plate) beneath these alloch- 
thonous terranes along the proto-Sunda 
trench is enigmatic, but arc magmatism (1, 
2,25) and ophiolite emplacement (26) date 

back to the Cretaceous. Even allowing for a 
temporary waning or cessation of subduc- 
tion in the Late Cretaceous to Early Tertia- 
ry, as suggested by the 'magmatic record ( I ,  
2), several thousands of kilometers of oce- 
anic lithosphere of the Indo-Australian 
Plate must have been consumed at this 
margin (4). The observation of a deep slab 
beneath the Sunda arc is consistent with 
such a long history of subduction. 

Fluid dynamical modeling demonstrated 
that a kink in the subduction trajectory can 
occur if the shallow part of the slab moves 
sideways while the sinking lithospheric slab 

encounters resistance against unobstructed 
~enetration into the lower mantle. This 
resistance can be caused by an increase in 
viscosity (27, 28), by dynamical effects of 
the endothermic phase change that coin- 
cides with the 660-km seismic discontinuity 
(28), and by an increase in intrinsic density 
resulting from compositional layering (29). 
The kink in the lithos~heric slab as inferred 

Fig. 2. Layer anomaly maps depicting results of the inversion for the region depicted by thin dashed lines 
in Fig. 1A. Blue (red) depicts high (low) P-wave velocrty. The dashed lines depict parallels and meridians 
at 10" intervals. (A) Solution representing upper mantle structure. Contour scale is -2 to +2% relative to 
iasp91. (B) Transition zone (scale: -1.5 to +1.5%). (C) Lower mantle (scale: -1.0 to +1.0%). (D through 
F) Recovery of a slab model designed from the inversion results in (A) through (C) (see inset in lower left 
hand comers for input at each depth interval). Velocity perturbations in the input model are set to 5,4, and 
3% relative to iasp91 for the slab in the upper mantle, transition zone, and lower mantle, respectively, and 
zero elsewhere. Artificial random errors between - 1.0 and +I .O s for P and - 1.5 and + 1.5 s forpP were 
added to the synthetic data. We used an input model with spatial characteristics similar to the slab 
structure inferred from the data inversion (A through C) to assess the effect of damping (14, 21). For the 
lower mantle, we applied a slightly larger damping. Amplitude recovery is 60% at best for all depth levels 
considered; the anomalies in (A) through (C) are underestimated accordingly by at least 40%. 

Fig. 8 Vertical cross sections of tomographic 
images across the Sunda arc. (A) Westemmost 
Banda arc. (B) East Sunda (between Flores and 
Java). (C) Central Sunda (Java). (D) West Sunda 
(Sumatra). Sections are plotted from the back-arc 
in the north (left) to the fore-arc region in the south 
(right). Open dots depict earthquake hypocenters 
of magnitude 25.5 on the Richter scale, projected 
from a distance of up to 50 km on both sides of the 
plane of section. The model parameterization in 
the radial direction is illustrated at the right side of 
(D). Notice the necking of the slab across the 
seismic gap in (B) and (C). 
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from. for instance. Fie. 3B can be ex~lained . - 
by viscosity layering alone but does not 
conclusively rule out a controlling effect of 
the phase boundary with a moderately neg- 
ative Clapeyron slope or a small increase in 
intrinsic density, provided flux is allowed 
between the upper and lower mantle. 

At first glance, the along strike variation 
in slab morphology beneath the Sunda arc 
appears similar to that beneath the Tonga- 
Kermadec arc [compare, for instance, Fig. 3, 
B through D, with figure 3 of (13)], but we 
argue that the deep Sunda slab evolved 
differently. Kinks in the subduction trajec- 
tory beneath southwestern Pacific island 
arcs were explained by retrograde motion, 
or roll back. of the slabs in a dvnamicallv 
self-consistent way, causing oceanward 
trench mimation and concurrent back arc 
spreading.-lateral variation in the shape of 
slab was explained by trench rotation ac- 
companying changes in plate motion (12, 
13). As a result of the rotation, the Tonga 
trench has remained orthogonal to the di- 
rection of subduction. In contrast, the 
Sumatra trench is oblique to the present- 
day direction of plate motion, and from the 
difference in the strike of the high-velocity 
anomalies in the upper (Fig. 2A) and lower 
mantle (Fig. 2C), we infer a clockwise ro- 
tation of the shallow slab relative to the 
deep slab. The inference that the strike of 
the lower mantle slab is consistent with the 
present-day direction of subduction of the 
Indo-Australian Plate beneath Eurasia (30, 
31) suggests that the rotation cannot be 
explained by a change in the direction of 
the relative motion of the major plates. 
Instead, we postulate that the rotation of 
Sumatra relative to the deep slab may have 
been caused by the northward movement of 
India during the Early Tertiary (3) and the 
collision of a mid-oceanic ridge complex 
with the volcanic arcs of western Indonesia 

puter reconstructions of plate motions be- 
tween -60 and -6 Ma (4). The northward 
indentation of India in the west and the 
southward expansion of the overriding plate 
in the east may have formed a torque that 
caused rotation of the Sunda trench. This 
torque may have been enforced by tensional 
stresses along the Java trench (Fig. 4) owing 
to the large negative buoyancy of the old 
oceanic lithosphere (3, which may have 
facilitated the oceanward migration of the 
eastern part of the Sunda arc and, conse- 
quently, the kinking of the slab. 

The discussion of the slab detachment 
beneath Sumatra is still tentative. From 
finite element modeling, Cloetingh and 
Wortel (5) inferred a small slab pull for 
Sumatra and a large increase in tensional 
stress in the region just east of 105"E, that 
is, western Java, and the regions of either 
detachment or continuity of the Sunda slab 
as inferred from the tomographic images 
correlate well with the tectonic stress per- 
pendicular to the Sunda arc (Fig. 4). At this 
stage, we can only speculate on the evolu- 
tion of the slab detachment. It is possible 
that the detachment was triggered by the 
Early Tertiary arrival of the oceanic spread- 
ing center at the western Sunda trench. 
The buoyancy of the young lithosphere and 
the change to oblique subduction because 
of the rotation of Sumatra, which reduced 
flow in the vertical direction (33), may 
have combined to temporarily cease sub- 
duction, while the deep, old slab continued 
to sink to larger depths. Wortel and Spak- 
man (34) studied the dynamical implica- 
tions of slab detachment and invoked lat- 
eral expansion of a detachment zone to 
explain the dynamical evolution of the 
eastern Mediterranean. The observed later- 
al change in the size of the vertical gap 
beneath Sumatra may be indicative of a 
diachronous evolution of the detachment. 

(2-4,32). The resulting escape tectonics in A southeastward propagation of the detach- 
southeastern Asia (2 ,3)  included clockwise ment would result in a lateral migration of 
rotation of tectonic units in Indochina and the locus of maximum slab pull, which 
Indonesia and is nicely illustrated by com- could have facilitated the rotation of 

Fig. 4. Cartoon summariz- 
ing our interpretation of the 
images of inferred slab 
structure . beneath the 
Sunda and westem Banda 
arcs. The shallow slab dips 
in a northeast direction at an 
angle of -40" below Su- 
matra and in a north direc- 
tion at an angle of -60" be- 
low Java; the deep slab 
sinks almost vertically into 
the lower mantle. The tec- 
tonic stress perpendicular to 
the trench as derived by 
Cloetingh and Wortel (!5) is 
also displayed. Positive and 
negative stress are associated with tension and compression, respectively. 

Sumatra (34, 35). However, the space-time 
evolution of slab structure below Sumatra is 
not yet understood in sufficient detail to 
claim the necessity for lateral propagation 
of the detachment, and further investiga- 
tion of this intriguing structural feature is 
required. 
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crucial information about phase transitions 
and high-pressure minerals (7-9). Unfortu­
nately, our understanding of shock-induced 
phase transitions and the conditions of high 
pressure and temperature in shocked mete­
orites is limited by the fact that shock ex­
periments do not produce such transforma­
tions. To understand the pressure and tem­
perature conditions and the durations of 
shock events in chondrites, one must exam­
ine the minerals that crystallize from shock 
melts at high pressure as well as those 
formed by solid-state transformation. Shock 
melts in terrestrial and lunar rocks, for ex­
ample, do not crystallize high-pressure min­
erals, whereas shock veins in chondrites do 
(8, 10). This difference suggests a distinc­
tion between the pressure-temperature his­
tories of impact events on chondritic aster­
oids and those on the Earth and moon. 

The heavily shocked Sixiangkou meteor­
ite contains black veins, ranging in width 
from 0.1 to 2 mm, that consist of two lithol-
ogies: (i) mostly unfractured, rounded, large 
polycrystalline grains of ringwoodite and 
low-Ca majorite (15 to 300 \xm in diameter), 
plus diaplectic plagioclase glass (10 to 60 |mm 
in diameter), and (ii) a fine-grained matrix 

The Majorite-Pyrope + Magnesiowustite 
Assemblage: Constraints on the History of 

Shock Veins in Chondrites 
Ming Chen, Thomas G. Sharp, Ahmed El Goresy,* 

Brigitte Wopenka, Xiande Xie 

Shock veins in the Sixiangkou (L6) chondrite contain two high-pressure assemblages: (i) 
majorite-pyrope solid solution plus magnesiowustite that crystallized at high pressures 
and temperatures from a shock-induced silicate melt of bulk Sixiangkou composition and 
(ii) ringwoodite plus low-calcium majorite that were produced by solid-state transforma­
tion of olivine and low-calcium pyroxene. The morphology and chemistry of the majorite-
pyrope garnet and the size of the magnesiowustite crystals indicate a longer duration at 
high pressure and temperature than predicted by impact scenarios. This pressure-tem­
perature regime is constrained by the olivine-ringwoodite and orthopyroxene-majorite 
phase transformations, fusion of the meteorite constituents, and crystallization of ma­
jorite-pyrope solid solution plus magnesiowustite from that melt under high pressure. 


