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Electrophoretically Uniform Fluorescent Dyes for
Automated DNA Sequencing

Michael L. Metzker,* Jing Lu, Richard A. Gibbs

Aclass of dyes, BODIPY fluorophores, has been identified for automated DNA sequencing
that has improved spectral characteristics compared with conventional fluorescein and
rhodamine dyes. Single and double BODIPY dye primers were characterized in com-
mercially available DNA sequencers and showed uniform electrophoretic mobilities and
high fluorescence intensities. The improved physical properties of BODIPY dye primers
were demonstrated by direct base-calling from the unprocessed fluorescent signals and
improved heterozygote analyses of mixed-base populations. The high sensitivity of
BODIPY dye primers requires at least 33 percent less reagent consumed per reaction than
conventional dye primers, which should affect the costs of large genome-sequencing

efforts.

Families of fluorescent dyes form the basis
of multicomponent DNA detection assays.
In automated DNA sequencing, up to four
dyes are attached to oligonucleotides (1)
that are enzymatically extended by DNA
polymerase to generate a set of nested frag-
ments. DNA sequence data are obtained
after electrophoretic separation of the DNA
and excitation, detection, and processing of
the raw fluorescent signal by a computer.
The generation and interpretation of these
mixed fluorescent signals are therefore the
central elements of current DNA sequenc-
ing technology.

Dyes suitable for high-throughput ge-
nome-scale DNA sequencing require the
combined properties of physical stability,
minimally overlapping emission spectra,
high fluorescence intensity, and uniform
electrophoretic mobilities. Although physi-
cally stable, the currently available set of
fluoroscein and rhodamine dyes do not
meet the remaining criteria and require
both chemical and software corrections to
produce optimal data (1).

Four spectrally resolvable dipyrro-
metheneboron difluoride (BODIPY) dyes
have been identified (Fig. 1) that show
uniform electrophoretic properties under a
variety of polyacrylamide gel conditions.
Initially, the substitution of a BODIPY-
labeled universal sequencing primer (Fig.
2A) for the same primer labeled with the
corresponding fluorescein or rhodamine dye
(2) generated termination reactions prod-
ucts that migrated approximately ¥ to 1
base faster by gel electrophoresis (Fig. 3, A
and B). Substitution of BODIPY dyes la-
beled with various linker-arm modifications
(Fig. 2A) revealed the optimal configura-
tions that mimicked the mobility pattern of
software-corrected fluorescein or rhoda-
mine dye primers (Fig. 3, A and C) (3). The
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combination of these four BODIPY dye
primers yielded high-quality sequencing
data when analyzed with mobility software
correction; however, the spacing pattern of
the BODIPY dye primer set was further
improved in the beginning of the sequenc-
ing run when no software correction was
applied at all (4). Further evaluation of
other BODIPY-linker combinations yielded
an optimal dye primer set (5). Thus, a set of
four BODIPY-linker constructs was identi-
fied that generated excellent sequence data
when analyzed without mobility correction
and gave an indistinguishable spacing pat-
tern compared with software-corrected con-
ventional sequencing reactions.
Comparison of normalized, overlapping
emission spectra revealed that the band-
widths of the BODIPY dye primer set are
narrower than their respective convention-
al dye primer counterparts (6), resulting in
lower noise cross-talk between the instru-
ment’s collection filters (Fig. 4). The signal
strength of BODIPY dyes, measured by flu-
orescence spectroscopy and an ABI 373A

BODIPY 564/570 BODIPY 581/591

Fig. 1. Chemical structures of four BODIPY dyes
for automated DNA sequencing. BODIPY dyes
(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-3-
propionic acid) are indicated followed by their
approximate absorption/emission maxima.
BODIPY 503/512 (5,7-dimethyl-BODIPY),
BODIPY 523/547 (5-phenyl-BODIPY), BODIPY
564/570 (5-styryl-BODIPY), and BODIPY 581/591
[5-(4-phenyl-1,3-butadienyl)-BODIPY].
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instrument, gave results comparable to
those for the four conventional dyes (7).

To improve the emission intensity, we
constructed doubly labeled dye primers and
evaluated them for fluorescence energy
transfer (ET). To achieve efficient ET and
maximal signal, we systematically substitut-
ed oligonucleotides with the acceptor dye at
base increments away from either a 5-car-
boxyfluorescein (FAM) donor (0 to 3 bases
apart) or a BODIPY 503/512 donor (1 to 10
bases apart) (8). We observed that ET effi-
ciency decreased with increasing distance
and decreased with decreasing spectral
overlap between donor and acceptor dyes
9).

A 3-base separation between either the
FAM donor (FET-3) or the BODIPY 503/
512 donor (BET-3) (Fig. 2B), and acceptor
dyes was observed to give the greatest signal
enhancement for BODIPY 564/570 and
BODIPY 581/591 dyes, consistent with
FAM-TAMRA (F3T) and FAM-ROX
(F3R) dye pairs (10). BET-3 dye primers,
however, showed considerably greater ET
efficiencies (11) and signal enhancements
over FET-3 dye primers (4). This observa-
tion was unexpected because FAM showed
a greater spectral overlap with BODIPY
dyes than BODIPY 503/512. BET-3-
BODIPY 564/570 and BET-3-BODIPY

A BODIPY or
conventional dye Q
1
HN\/\/\/\(Y?\
R865 0
TGTAAAACGACGGCCAGT
AN
H?aoo P &° .
IPY
R930
Oy 20
o
ONFGTAAAACGACGGCCAGT
BODIPY
1
AN A
oo Thymine
RO jﬁ
3
“NTGTAAAACGACGGCCAGT
B R1 R2
BET-6/3 Hrlt—(cuz)n—Acc!-rc'lAAAAccAcccccfxcr

BODIPY

Fig. 2. Modifications of the universal (U) sequenc-
ing primer at the 5’ end. (A) Single dye-labeled
primers. R865 (U-Cg), designated universal prim-
er; Cg linker, R930 (U*'-C,); and R931 (U+'-Gy).
(B) Double dye-labeled primers. Because different
protecting groups block the linker-arm amines,
BET primers were first labeled intenally with
BODIPY 503/512. After removal of the mono-
methoxytrityl group, BET primers were end-la-
beled with the BODIPY dye set. For BODIPY 503/
512 and BODIPY 523/547 acceptor dyes, n = 6,
R1 = CH;, and R2 = (CH,);NHBODIPY 503/512.
For BODIPY 564/570 and BODIPY 581/591 ac-
ceptor dyes, n = 3, R1 = (CH,),;NHBODIPY 503/
512, and R2 = CH,.

581/591 primers had signal enhancements
of 180% and 360% over the single BODIPY
primers (7) and ET efficiencies greater than
98%.

BET-3-BODIPY 523/547, however,
showed a gradual instability in denaturing,
but not native gels compared with the sin-
gle dye primer (4). A 6- to 10-base separa-
tion between the BODIPY donor and ac-
ceptor dyes corrected this phenomenon.
Mixing experiments revealed that the mo-
bility of BET termination reactions in-
creased gradually with increased distance
between donor and acceptor dyes (4). The
combination of BET-6- and BET-3 dye

primers showed the least mobility discrep-
ancy, which was adjusted by shortening the
BET-3 linker arm (Fig. 2B) to generate
uniformly spaced termination reactions
without software correction (12). BET-6—
BODIPY 503/512 and BET-6-BODIPY
523/547 showed similar signal intensities
compared with the single dye primers, and
the latter BET-6 primer had an ET efficien-
cy of 98%. The normalized, overlapping
spectral profiles of BET-6/3 dye primers
were indistinguishable from the single
BODIPY dye primer spectra shown in Fig.
4, consistent with efficient ET (4). Overall,
the strong signal enhancement of the weak-

Fig. 3. Single BODIPY-labeled sub-

A B Cc
JOE BODIPY 523/547 BODIPY 5235547 Stitution experiment. DNA sequenc-
ing reactions were generated by Bst
ATTAA TA GRARA ANTAANAHNARNT ATTAATAGAAR solid-phase sequencing (15) with the
R865 (U-Cg) RB65 (U-Cg) R931 (U*1-Cg) R865 primer labeled with FAM,

TAMRA, and ROX plus (A) JOE, (B)
BODIPY 523/547, or (C) R931 prim-
er labeled with BODIPY 523/547.
The 373A raw files were analyzed
(23) with the DP6%{M13RP1} mobil- -
ity-correction file.

100 100

Normalized intensity (%)
8

.

A (nm)

Fig. 5. BET-6/3 applica- A
tions. (A) Comparison of
raw traces near the prim-
er peak for BET-6/3 and
conventional dye prim-
ers. Thermo Sequenase
(76) cycle sequencing re-
actions of M13 clones
were generated from 0.4
pmol reactions for BET-
3-BODIPY 564/570 and
BET-3-BODIPY 581/591
compared with 0.8-pmol
reactions for TAMRA and
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BET-6/3 universal dye primers: Raw traces
t 6 6 6

Conventional universal dye primers: Raw traces
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BODIPY Fig. 4. Normalized emission spectra
;6"53730,,,,, of four conventional dye primers and
\ /501/591 BODIPY dye primers.
\\\ .\\.‘
B
BET-6/3 custom dye primers

A (2 3

[\

Conventional custom
dye primers

cCE

e

ROX, run on a 377A DNA sequencer (4.25% polyacrylamide gel), and ana- : R AT

lyzed by version 2.1.1 software program with the ABI100 (standard) base
caller with either DP4%{-21M13} (conventional) or no mobility (BET) correc-
tion files, respectively. The analyzed data were virtually indistinguishable for
both sequencing reads (4). (B) Custom dye primers (conventional: NCAG-
GAGGAATACCACATCCCGCAGG; and BET: NACGT* TGT*"GGAATACCA-
CATCCCGCAGG) were dye-labeled (2, 8). The 373A raw files were analyzed

M\

(23) with either DP6%{M13RP1} or no mobility-correction files, respectively.
Mixed-base positions were quantitated with ABI Factura analysis software

(24).
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er fluorescent dyes compared with the ab-
sence of significant enhancements of the
normally stronger fluorescent dyes produced
a set of four dye primers with roughly bal-
anced signal intensities.

The sensitivity of the complete BET-6/3
primer set was examined by serial dilutions
of DNA template with an ABI 377A DNA
sequencer on a single gel, and sufficient
signal was correctly analyzed even with a
16-fold reduction of concentration (4).
This increased sensitivity of BET-6/3 dye
primers now enables the direct loading of
sequencing reactions onto gels without a
laborious concentration step.

The unprocessed fluorescent signals gen-
erated from BET-6/3 sequencing reactions
demonstrate the benefits of the uniform mo-
bility, properly balanced signal outputs, and
improved spectral purity. The raw data from
BET-6/3 reactions generate a DNA sequenc-
ing pattern that is visually interpretable and
agrees well with the corresponding analyzed
data (Fig. 5A). In contrast, no discernible
sequence pattern could be detected from the
unprocessed signals of conventional primers.
Comparative studies of conventional, single
BODIPY, and BET-6/3 dye primers are un-
der way to examine these benefits in relation
to improved base-calling and readlength in
large-scale sequencing (4).

Automated DNA sequencing has been
routinely used for identifying heterozygosity
(13). Analyses of mixed-base populations,
however, can be problematic because of
spacing errors or signal intensity differences
from fluorescein and rhodamine dyes. To
simulate heterozygous populations, two dif-
ferent molecular clones containing a 1121—
base pair (bp) insert from the protease—
reverse transcriptase region of human im-
munodeficiency virus—type 1 (HIV-1) were
quantitated (14) and mixed (50:50), ampli-
fied by polymerase chain reaction (PCR),
and directly sequenced with custom BET-
6/3 dye primers (15) and Thermo Seque-
nase (16) (Fig. 5B). Our data show that the
mixed base is both positionally and quanti-
tatively more accurately defined by the
BET-6/3 dye primer system than the con-
ventional dye primer reactions.

Overall, the four BODIPY fluorophores
we identified have overcome the problems
presented by conventional and other ET
dye primers (10). Other BODIPY dyes were
examined, but were excluded from Fig. 1
because the maximum wavelength (A max-
imum) of the dyes did not sufficiently over-
lap with the bandwidth of the ABI 373A
instrument’s filter (12, 17). The second-
generation 377A DNA sequencer, howev-
er, uses a spectrograph to resolve the fluo-
rescent light into discrete wavelength pat-
terns that are detected by a charge-coupled
device (CCD). Thus, the optimization of
the X maximum of any dye set to the ap-
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propriate CCD pixels is now made possible
by software manipulation.

Both single and double BODIPY-labeled
primers should prove useful in other multi-
component genetic analyses, including se-
quencing by hybridization (18), in situ hy-
bridization, multiplex PCR (19), sizing of
DNA fragments, multiplex analyses of re-
striction fragment length polymorphisms
and variable number of tandem repeats, and
TAQMAN assays (20). Moreover, labeling
strategies to directly synthesize BODIPY sin-
gle and double dye primers (that is, phos-
phoramidite chemistry) should simplify and
standardize the construction of fluorescent
primers and probes. The identification of the
BODIPY dye set should affect routine genet-
ic analyses and large-scale sequencing efforts.
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