
The  geometry of the adsorbed colnplex 
was comaared to that of the free saecies (Ta- 
ble 1).  The  methoxo~lium cation forms two 
strong hydrogen bonds, wiih nonbonded 0 -H 
distances as short as 1.35 A. This value agrees 
with the trend observed in cluster calcula- 
tions, in which the hydrogen bond length 
decreases as the size the model increases; 
values as low as 1.41 A have been observed for 
large systems. This finding is consistent with 
the behavior observed in H j O z f ,  in which 
the proton allnost symmetrically bridges be- 
tween two wzter molecules with distances of 
close to 1.2 A (17). The particularly strong 
hydrogen bonding also explains the large hy- 
droxyl stretching frequency shifts observed in 
the infrared spectrum (4) .  Our calculated heat 
of adsorption for methanol, 82 kJ molpl ,  is 
within the large range of experilne~ltal esti- 
mates (63 to 120 kJ molpl)  measured for 
various zeolites (7, 18).  

For comparison, we also exalni~led the ad- 
sorption of methanol at an  acid site in a 
highly siliceous form of the sodalite structure, 
again with a Si/Al ratio of 11. Although so- 
dalite has the same number of atoms Der  n nit 
cell as chabazite, the structure is very differ- 
ent, lnade up of p cages linked to give a small 
channel aperture, consisting of six-rings rath- 
er than the eight-rings found in chabazite. 
This structure does not have pores into which 
lnethanol could penetrate, and the acidlc 
form is experimentally not known, but the 
sodalite cage is a unit found in several Inore 
cornalex structures such as zeolite A. 

Steric hindrance prevents ~l le thanol  
from lying in the  six-ring windows, and thus 
the  molecule is situated in the Inore open 
cage region of the structure. W e  fou~ld that 

u - 
lnethanol was physisorbed instead of chemi- 
sorbed, with the proton remaining bound to 
the  zeolite framework (Fig. 3 ) .  Despite the 
different structures of the  adsorption com- 
plexes in  the  two structures, the binding 
energy of lnethanol in sodalite was sinlilar 
to that in chabazite (73 kJ molp l ) .  

W e  conclude that there is a delicate bal- 
ance between the ahvsisorbed and chemi- 

L ,  

sorbed states of lnethanol in aluminosilicates. 
The  nature of the adsorption colnplex is cru- 
cially dependent on the structure of the zeo- 
lite being considered. Contrary to previous 
c l~~s te r  calculations (6,  7), calculations taking 
into account the full periodicity of the zeolite 
structure sho\\1 instances in which arotoll 
transfer from the zeolite to methanol takes 
place. In  regions containing medium-sized 
pores, it appears that lnethanol is preferential- 
ly adsorbed and is activated through protona- 
tion. In the case of chabazite this process 
occurs in the eight-ring window, and we can 
infer from the catalvtic activitv of ZSM-5 that 
the same is prohabiy true for i0-ri11gs. When  
methanol is situated in the more open cage 
regions of zeolites, it appears to be unproto- 
mated and potelltially less chemically active. 

We speculate that the lnediuln-sized 8 M. C Payne, M. P. Teter D. C Alan, T. A. Aras J D. 
Joannopoulos, Rev. Mod Phys. 64, 1045 (1992). pores are the most active site for methanol p, Hohenberu and W, Phvs Rev, 136, B864 . . 

reaction, because these are where methanol 11964): W. ~ o h n  and L. J. Sham. ibid. 140. A1 133 
appears to be protonated. T h e  presellce of (I 965). 

both lnethanol alld lnethoxonillln species in 10. The Perdew-Wang functlona was used [J. P. Perdew, 
n Electronic Structure ofSolids '91, P Zelsche and H. 

regions with different s t ruct~~ral  characteris- Eschrg Eds (Akademie Verlag. Berlin, 1991). 
tics may explai~l the difficulty in una~l~higu-  11. A pane wave cutoff of 650 eV was used, and B r -  

ously assigning experimental infrared spec- ouln zone sampling was performed only at the r 
pont We estlmate the error due to these approxl- 

tra. W e  have dernollstrated the potential of matons to be about 2 kJ mol-' 
periodic ah initio calculations to treat mo- 12. Ab initio norm-consew~ng pseudopotentials were 

lecular adsorption in aluminosilicates, which used. Those for carbon and oxygen were klnetlc 
energy-optlmzed by Qc f te r tunng [M. H, Leeetal., 

can now be extended to aid the elucidation n preparaton. 
of the reaction pathways of lnethanol within 13. op tm~za ton  was performed wlth no symmetry con- 

such heterogeneous catalysts. strants u n t  forces were <0.03 eV/A The estmat- 

hTote a~lded in proof: Our  results for the 
ed error In energy of relaxed structure was 1 2  kJ 
mol-' 

case of adsorption of methanol in sodalite 14. D H. Aue and M. T. Bowers, in Gas Phase Ion 
are collsistellt with recently published cal- Chemistry M. T. Bowers Ed. (Academic Press New 

culations of infrared spectra (19).  York, 1979) vol. 2 p. 18. 
15. L. S. Dent and J. V. Smlth. Nature 181 1794 (19581. 
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Reversible Cleavage and Formation of the 
Dioxygen 0-0 Bond Within a Dicopper Complex 
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Andreas D. Zuberbuhler, William B. Tolman* 

A key step in dioxygen evolution during photosynthesis is the oxidative generation of the 
0-0 bond from water by a manganese cluster consisting of M,(p-0), units (where M is 
manganese). The reverse reaction, reductive cleavage of the dioxygen 0-0 bond, is 
performed at a variety of dicopper and di-iron active sites in enzymes that catalyze 
important organic oxidations. Both processes can be envisioned to involve the intercon- 
version of dimetal-dioxygen adducts, M,(O,), and isomers having M,(p,-0), cores. The 
viability of this notion has been demonstrated by the identification of an equilibrium 
between synthetic complexes having [Cu,(p,-q?q2-0,)12+ and [C~,(p,-0),]~- cores 
through kinetic, spectroscopic, and crystallographic studies. 

D i o x y g e n  0-0 bo~ld-forming and b o ~ l d -  
cleaving reactions occur at tra~lsitioll metal 
centers in a number of enzymes. For exam- 
ple, 0-0 bond cleavage occurs at mononu- 
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clear heme (cytochrome P-450) (1 )  and 
nonhelne di-iron (methane monooxygen- 
ase) (2-4) centers that hydroxylate alkanes 
to produce key metabolites. Similar reac- 
tions are needed for the oxidation of ty- 
rosine by a dicopper active site to form 
L-dopa (tyrosinase) (5) and by a nonhelne 
di-iron center to generate the  catalytically 
esse~ltial radical of rihonucleotide reductase 
(3, 4 ,  6). T h e  reverse reaction, the  oxida- 
tive coupling of water m o l e c ~ ~ l e s  to form O2 



111 pl~otosystem 11, occurs a t  a tetra~luclear 
M n  cluster that has been proposed to con- 
sist of two Mn,(k-O), components (struc- 
ture B, M = M n )  (4,  7) .  Related C u  and Fe 

species with similar core structures that 
have recently heen prepared have been 
found to be involved in hiolnimetic O2 
activation processes (8, 9 ) .  In  addition, the 
existence of the  isomeric M,(p-r12:T2-02) 
core structure ( A )  has heen crystallographi- 
cally established for M = C u  as exelnplified 
by the structures of ~ x ~ h e l n o c y a n i n  (10) 
and a synthetic analog (1 1) .  T h e  composi- 
tional similarity of these two structural mo- 
tifs ( A  and B )  suggests that a key step in O2 
activation at a dilnetal center may he a 
transformatio~l of A to B and that a pivotal 

1 2 

Fig. 1. Synthesis and nterconversions of 1 and 2. 

Wavelength (nm) 

Fig. 2. Ultraviolet-visible spectra recorded at 
8 0 ° C  of (curve A) 1 in CH2C12 prepared by oxy- 
genation of a CH2C12 solution of [LIPr3Cu- 
(CH,CN)]CO,; (curve A') 1 prepared by dilutlon of 
2 (1.2 X M) in THF wth -50-fold volume of 
CH,CI,; (curve B) 2 in THF (turbld supension due to 
low solubility In pure THF, which results in the ob- 
served baseline absorpton) prepared by oxygen- 
ation of a THF souton of [LPr3Cu(CH3CN)]CI0,; 
and (curve B') 2 resulting from diuton of 1 (1.2 x 

M) in CH,CI, with -50-fold volume of THF. 

step in O2 evolution may simply be the  
reverse (1 2) .  W e  present here x-ray crystal- 
lographic support for structure B and dern- 
onstrate experimentally the  interconver- 
sion between A and B for a synthetic sys- 
tem with M = Cu.  

W e  recently reported (1 3) that oxygen- 
ation of the  Cu(1) complex [L'r'3Cu- 
(CH3CN)](03SCF3)  (LLrt3 = 1,4,7-triiso- 
propyl-l,4,7-triazacyclo1~01~a1~e) in CH,Cl, 
cleanly and reversibly produced an  0, ad- 
duct (1, Fig. 1)  with ultraviolet-visible (UV- 
vis) (curve A, Fig. 2) and Ralnan (vo-o = 

'722 cm-')  features that are diagnostic of the 
(~-r12:r12-peroxo)dicopper(II) core (1 1 ,  14). 
W h e n  the oxygenation of [L'r'3Cu- 
(CH3CN)](X) [X = PF,- or C10,- ( IS)]  
was carried out in tetrahydrofuran (THF),  a 
different species, 2, was obtained quantita- 
tively. This electron paramagnetic resonance 
(EPR)-silent molecule exhibits intense UV- 
vis features at 324 and 448 nm (curve B, Fig. 
2) and a resonance Raman feature at 600 
c m '  that shifts to 580 c m '  when prepared 
with 1 8 0 2 .  These spectral properties are 
quite different from those of 1 but are nearly 
identical to those attrihuted to [(LBn3Cu), 
(p-0),](C104)2 (3 ) ,  which was derived 
from the oxygenation of [LR"'Cu- 
(CH3CN)]C104 (LRn3 = 1,4,7-tribenzyl- 
1,4,7-triazacyclononane) in CH,Cl, (Table 
1)  (9) .  W e  assign the UV-vis bands and the 
lS02-sensitive resonance Raman peak, re- 

spectively, to charge transfer transitions and 
a syrnlnetric (Al,J stretching vibration of the 
( C L I ~ ( ~ - O ) ~ } "  cores of 2 and 3. 

W e  have authenticated the  structure of 
3 by low-temperature x-ray crystallography 
(Fig. 3 )  (1 6). T h e  C u 2 ( k - 0 ) 2  moiety 
characterized by Cu. .Cu [2.794(2) A 
(numbers in parentheses represent errorsoin 
the last digit)], C u - 0  (average = 1.81 A ) ,  
and 0. .O [2.287(5) A ]  distances that are 
highly congruent with distances determined 
for other M,(k-O), ( M  = Fe, M n )  units 
( 7 ,  8)  but are distinct from those character- 
istic for the  C U ~ ( ~ - ~ ~ : ~ ~ - O ~ )  cqre [for ex- 
ample, Cu . .  . ~ L I  = 3.560(3) A, av2rage 
C u - 0  = 1.92 A ,  and 0-0 = 1.41(1) A for 
the  complex reported in (1 I)] .  T h e  Cu. 
C u  and C u - 0  distances in 3 are also signif- 
icantly shorter than those typically found in 
bis(p-hy~roxo)dicopp,er(II) complexes (2.9 
to 3.0 A and 1.93 A ,  respectively) (17) ,  
consistent with a higher overall oxidation 
level of the Cu2(k-O),  core (18) .  T h e  
oxidizing capacity of both 2 and 3 is man- 
ifested in their common ability to  activate 
aliphatic C-H bonds, as both colnpounds 
decompose ~1po11 warming through a n  oxi- 
dative N-dealkylation of their respective 
~l~acrocycl ic  ligands that involves rate-de- 
termining ligand-substituent C-H bond 
cleavage (isopropyl methine C-H for 2, 
benzylic C-H for 3 )  (1 9 ) .  

T h e  above results show that oxygen- 

Table 1. Selected spectroscopic and physical properiies of the Cu,-0, adducts discussed in the text. 
All adducts exhiblt 2 : 1 Cu:O, stoichometry [I-3: low-temperature (-75°C) 0, uptake manometry] and 
are EPR-silent; all other comments apply to the synthetic complexes alone. We measured the UV-vs 
spectra below -70°C using a custom-manufactured optcal Dewar fltted wlth quartz wlndows (A,,,, 
wavelength of maximum absorptlon; 8 ,  extinction coefflclent). The resonance Raman spectra were 
obtained at -196°C as  frozen solutions using 457-nm (2 or 3) or 514-nm (1-3) laser excitation or both; 
only '80-sens~t~ve vbratons are quoted, with speciflc 180 shifts In parentheses. 

UV-vis spectrum 

Core Compound A,,, E Resonance C w C u  Ref. 
structure ligands (nm) (M-I cm-I) Raman distance 

(solvent) spectrum 
(cm-1) 

(4 

OxyHc 340 20,000 748 (708) 3.6(2) (10, 14) 
3 His/Cu 580 1,000 (x-ray) 

(H20) 

CU'PCU 
'0' 1 366 22,500 722 (680)* 

~ i P r 3  
( 13) 

510 1,300 
(CH2C12) 

' 2  324 11,000 600 (580) This work 
~ P r 3  448 13,000 

(THF) 

3 31 8 12,000 602408 t  2.794(2) ( 9 ) ,  
~ B n 3  430 14,000 (583) (x-ray) this work 

\ (CH2C12) 

*A weak vbration at 600 c m  ' ('9 at 580 c m ' )  was also observed wth 51 4-nm exc~taton, lndcatve of the presence 
of a small percentage of 2. -I-Occurs as a Ferm~ doublet that collapses to a snge peak upon j80 substitution 
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ation of [LiPr3Cu(CH3CN)]+ can produce 
either 1 or 2, depending on solvent. More 
interestingly, 1 interconverts with 2 simply 
upon change of solvent (Figs. 1 and 2). 
Thus, addition of a solution of 1 in CH,Cl, 
(2.4 X M; curve A, Fig. 2) to a >10 
fold excess volume of THF (all at -78°C) 
immediately yielded pure 2, as shown by the 
dramatically changed optical spectrum 
(curve B', Fig. 2) and the disappearance of 
v- in the resonance Raman spectrum (Ta- 
ble 1). The inverse addition of a solution of 
pure 2 in THF (curve B, Fig. 2) to a >lo- 
fold excess of CH,Cl, generated 1 (curve 
A', Fig. 2). Mixtures of 1 and 2 were evident 
in solutions with intermediate solvent ratios. 
A -4:l mixture of 1 and 2 formed upon 
oxygenation of [L'Pr3Cu(CH3CN)]C104 in 
acetone at -78°C as indicated by the pres- 
ence of features attributable to both species 
in UV-vis and resonance Raman spectra 
(peaks at 722 cm-' [Av(180) = 42 cm-'1 
and 602 cm-' [Av(I80) = 24 cm-'I), and 
this mixture could be accessed by addition of 
either 1 in CH,Cl, or 2 in THF to excess 
acetone. The opposite dilution protocol (ad- 
dition of the acetone mixture to CH,Cl, or 
THF) also resulted in conversion into pure 1 
or 2, respectively. These combined experi- 
mental results show that the [ C U , ( ~ ~ : ~ ~ -  
O2)I2+ and [C~,(p.-0),]~+ cores can trans- 

Fig. 3. (A) Representation of the low-temperature 
x-ray clystal structure of 3 shown with 35% ther- 
mal ellipsoids. Hydrogen atoms, SbF,- counter- 
ions, and solvent molecules are omitted for clarity. 
(B) View of the Cu coordination spheres (50% 
thermal ellipsoids) with relevant interatomic dis- 
tances (in angstroms) and an angle noted. 

mutate and suggest that 1 and 2 are in 
equilibrium, especially in solvents in which 
mixtures of the two compounds are apparent. 

The existence of a rapid equilibrium be- 
tween the two isomers was substantiated by 
the observed kinetics of the evolution and 
much slower decay of the mixture of 1 and 2 
in acetone. Stopped-flow UV-vis monitoring 
of the formation of this mixture from the 
reaction of [LiPr3Cu(CH3CN)]SbF with ex- 
cess 0, between -83" and -50°C revealed a 
clean first-order dependence on starting Cu 
complex concentration, no observable inter- 
mediate, and rate constants k for the genera- 
tion of l and 2 that were identical to each 
other at each temperature (20) (Figs. 4 and 5). 
The decomposition rates of 1 and 2 were also 
the same (at -40°C, k = 4.5 x lop3 s-'). 

We explain these results by invoking an 
equilibrium between 1 and 2 that is estab- 
lished more rapidly than the initial O2 bind- 
ing step and the G H  bond cleavage govem- 
ing their decomposition. Specifically, we 

Wavelength (nm) 

Fa. 4. Time-dependent (250 s, total) UV-vis spectra 
for the oxygenation reaction of [LimCu(CH,CN)]- 
SbF, (6.3 x 1 0-4 M) to yield the mixture of 1 and 2 at 
-60°C; [OJ = 5.1 X M. 

0.1 

0.2: 
0 50 100 150 200 250 

hme (s) 

Fig. 5. Plots of absorbance versus time for the 
oxygenation reaction depicted in Fig. 4 at two 
wavelengths corresponding to 1 (365 nm; left y 
axis, X) and 2 (406 nm; right y axis, 0). Identical 
rates of evolution of 1 and 2 are indicated by the 
congruence of the two plots [Yl) = k(2) = 1.77 
M-I s-I]. 

propose that the oxygenation involves rate- 
determining formation of a mononuclear su- 
peroxo adduct (21, 22) followed by faster 
trapping by a second monomeric Cu(1) start- 
ing complex and swift equilibration between 
1 (which perhaps forms first) and 2. The 
measured activation parameters AHS = 37.2 
t 0.5 kJ mol-' and ASS = -62 2 2 J K-' 
mol-I) are similar to those previously deter- 
mined for the generation of the superoxo 
complex [(BQPA)CuO,]+ [BQPA = (bis-2- 
quinolyl)(2-pyridyl)methylamine] from a 
monocopper(1) precursor (AH* = 30 2 2 kJ 
mol-' and ASS = -53 2 8 J K-' mol-I) 
(22), further supporting rate-determining su- 
peroxo-Cu complex formation in the reac- 
tion that ultimately yields 1 and 2. 

The experimental verification of the in- 
terconversion of {Mz(p.-qZ:q2-02))n+ (A) 
and (MZ(p-O)2)n+ (B) for M = Cu and n 
= 2 presented herein provides important 
precedence for the operation of analogous 
transformations in other synthetic and bio- 
logical systems having M = Cu, Fe, or Mn 
(n = 2 or 4). Both the activation of 0, 
through 0-0 bond splitting by metallopro- 
teins and the evolution of 0, involving 
0-0 bond formation (23), as carried out by 
the Mn, cluster of photosystem I1 in plants, 
can be envisioned to proceed through the 
[ M 2 ( ~ - ~ ~ : ~ ~ - 0 , ) l " +  = [MZ(@),]n+ 
core isomerization. Our ability to directly 
observe this process for M = Cu attests to 
similar relative stabilities of the two cores 
supported by the LiPr3 macrocycle that are 
sensitive to solvent effects. The presence of 
features analogous to those we have as- 
signed to the Cu,(p-O), core in spectra 
reported for other dioxygen-Cu adducts 
(24) further argues for the potential gener- 
ality of the A-B interconversion. Definitive 
identification of the operation of this trans- 
formation in biological systems, as well as 
the more detailed characterization of this 
process in other synthetic compounds, 
should be investigated. 
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Hig h-Pressure Compounds in 
Methane-Hydrogen Mixtures 

M. S. Somayazulu," L. W. Finger, R. J. Hemley, H. K. Mao 

The effect of pressure on chemical interactions in molecular mixtures is important for 
problems spanning fundamental chemistry, planetary science, and materials science. 
Diamond-anvil cell studies reveal pressure-induced chemistry in the CH,-H, system. The 
system, which has no known compounds at ambient conditions, formed four molecular 
compounds, CH,(H,),, (CH,),H,, CH,(H,),, and CH4H,, at pressures up to 10 gigapas- 
cals. These have been characterized by synchrotron single-crystal x-ray diffraction, poly- 
crystalline x-ray diffraction, Raman spectroscopy, and visual observation. Although 
CH,(H,), crystallizes in the MgZn,-type, hexagonal Laves phase structure, (CH4)H, has 
a body-centered tetragonal structure that is similar to that of AI,Cu. The 1 :1 and 1 :2  
compounds are stable to at least 30 gigapascals. 

Chemica l  interactions in dense materials are 
ilnportant ~n a hroad range of proble~ns in 
pl~ysical science, and tlie nature of such inter- 
actions in mixtures of sitnCle molecular sys- 
tems has become tlie focus of ,lttention re- 
cently ( 1 ) .  F~uldamcntally, the stuiiy of s~lc11 
systems under pressure is important for tlieo- 
SICS of holiding in highly conilenseil states, for 
example, the evolut~on of bonding states 
(snch as van dcr Waals, covalent, and metal- 
lic) \vitll compressloti (2).  Tcclitiolog~cally, 
i~ir~estigatlon of such systems, part~cularly 
those conta~ning hydrogen, IS important for 
the design of energetic compoutiils and hydro- 
gen storage m,~tcrials (3). 

A \vide range of pressures (uk? to several 
hundred giga-pascals) call he createil aritli a 
diamond alir~il cell. High-pressure studies 
have been conil~~cteci to explain how simple 

Geophys~ca Laboratory and Center for H~gh  Pressure 
Research, Carneg~e lnst~tut~on of Washington, 5251 
Broad Branch Road, NW, Washngton, DC, 20015 USA 

'On leave from the High Pressure Phys~cs Div~sion, 
Bhabha Atomc Research Center, Bolnbay 400 085, 
n d ~ a  

gases and llqn~ds mix ~111der pressure, and 
some earlv observations sho~ved that mixtures 
of h e l ~ u m  and nitrogen fornlcd an unusual 
c o m p o ~ ~ n d  w ~ t h  tlie formnla He(N,),  , llnder 
pressLlrcs of approximately 8 GPa. Clletnical 
compouniis that are stable only at high prcs- 
sure Lvere discovered (4) and tcrlned van der 
Waals compo~~ncls (5-7). In addition, high- 
pressure H,-H,O (8) and H e - H 2 0  (9) clath- 
rates have been d~scovered. Here we prcsctlt a 
detallcd stnilv of met l ianc-hvi i toc  mixtures , ,-, 

under pressu;e. The  study revealed four near 
solid componnds having H2:CH4 lllolar ratios 
of 1 :2 ,  2 :1 ,  4 :1 ,  and 1 : l .  

A total of 17 iiifferent compositions In the 
CH4-H, system [verc studied. The  initial c o ~ i -  
celitration of the mlxture was fixed ft-om the 
partial pressures of the gases, corrected with 
tlie virial coefficients. Each mixture was load- 
eil in the iiianlotld anvil cell after sufficient 
time for holnogelilzatlon had heen allowed 
(typically a week), with a ruby chip for pres- 
sure calibration. T o  minimize reaction of hv- 
drogen, Be-CLI was used as tlie gasket material. 
For all our compositions, it was fo~und that the 
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