
models that assume stepwse mutaton of the STRP 
~ m p y  that the varlaton of allele sizes Increases In- 
early w~th tme (48) [D. 5. Godstein, A. Ruz Lnares, 
L. L. Cavali-Sforza, M. W. Feldman, Genetics 139, 
463 (1995jl. Thus, we can est~mate R as the ratio of 
varances of allele szes (in base pa~rs) for alleles less 
than 110 bp (22 5/0.75 = 30.0), glvng a maxlmum 
age of 167,000 Y.B.P. Because we have considered 
only a slnge locus, the standard error on this var- 
ance-ratlo estmate IS high. However, the apparent 
lower boundary of 85 bp to the STRP allele slze 
results In an underestmate of the t~me of orlgn of the 
Au(-) chromosome in Afrca, so agaln ths estlmate 
of R is conservatve. 

42. Despte a smaller effect~ve populat~on sze of A h - )  
chromosomes (because of a lower frequency), the 
mean varlance of STRP alleles on Alu(-j chrom- 
somes among the 10 sub-Saharan Afr~can popua- 
t~ons is still substantial [64% of the mean varance of 
STRP alleles on Alu(+) chromosomes], suggest~ng 
that whle the orig~n of the Alu(-) chromosome IS 

more recent than the orig~n of the Alu(+j chromo- 
some, it is st11 quite ancent. 

43 C B. Str~nger, In The Origin and Evolution ofHumans 
and Humanness, D. T. Rasmussen Ed. (Jones and 
Bartett, Boston, 19931, pp. 75-94. 

44 M. Slatk~n, Mol Blol. El/ol 12, 473 (1995). 
45 Both the STRP and the Alu deletion polymorphism 

are located In noncodng regions of the CD4 gene 
and are unlkey to have any functional s~gn~f~cance. 
Except In the unlikely case of strong posltlve CIS- 

actng epstass of functorial varants flankng exons 
1 and 2 of the 90-bp Au(-) chromosomes, seecton 
cannot expla~n the mantenance of the l~nkage d~s-  
equlhbrum seen In non-Afr~can populatons because 
there would be nothing to prevent format~on of 
"non- 90 bp" Alu(--) chromosomes by recombna- 
t~on between the markers or mutaton at the STRP, In 
addtion, the very low frequency of the Alu(-) chro- 
mosomes In Asa, the Pacifc islands, and the New 
World, as well as the very h~gh frequency of 85-bp 
Alu(+j and 11 0-bp Alu(+) chromosomes In all non- 
African populat~ons, argues aga~nst strong positive 
selecton for the Alu(-) chromosome. 

46. S A. T~shkoff. W. C Speed. J R. K~dd, K. K. Kidd, 
Am J. Phys. Anthropol. Suppl. 20. 21 1 (1995): S. A. 
T~shkoff et a/. . Am. J. Hum. Genet. 575, A42 (1 995); 
K. K. Kdd et a1 . Alcohohsm: Chnicaland Experimen- 
tal Research, In press. 

47 Very large and unlkey amounts of geneflow and dr~ft 
actlng In a s~m~lar manner In many geograph~cally 
dspersed popuatons would be requlred for the 90- 

The Exchange of Impact Ejecta 
Between Terrestrial Planets 

Brett J. Gladman, Joseph A. Burns, Martin Duncan, Pascal Lee, 
Harold F. Levison 

Orbital histories of ejecta from the terrestrial planets were numerically integrated to 
study their transfer to Earth. The properties of the lunar and martian meteorites are 
consistent with a recurrent ejection of small meteoroids as a result of impacts on their 
parent bodies. Long-range gravitational effects, especially secular resonances, strong- 
ly influence the orbits of many meteoroids, increasing their collision rates with other 
planets and the sun. These effects and collisional destruction in the asteroid belt result 
in shortened time scales and higher fluxes than previously believed, especially for 
martian meteorites. A small flux of mercurian ejecta appears possible; recovery of 
meteorites from the Earth and Venus is less likely. 

T h e  study of meteorites has illunlinated 
the nature of extraterrestrial en\,ironments 
and astrophysical processes, partic~~larly the 
conditions at the  time of our solar system's 
formation. Most meteorites come from as- 
teroids, but recently a number of objects 
from the lnoon and Mars have been recog- 
nized. These latter meteorites help to char- 
acterize the  surfaces of these bodies, espe- 
cially the  martian meteorites, which are our 
only samples of that planet. To learn Inore 
about the parent bodies and the paths that 

the lneteorites tral~eled before arriving o n  
Earth, we must understand the orbital dy- 
nalnics go\,erning their transfer. In  particu- 
lar, what is the  delil~ery efficiency, that is, 
the  fraction of escaping ejecta that reach 
Earth, from iiifferent sources? 

T h e  S N C  nleteorites (1)  ha\.e features 
that s~lggest they are derived from ~Clars (2)  
and are somehow deli\~ered to Earth. Even 
though the petrology anil young crystalliza- 
tion ages of the SNCs point to a n  origin o n  
a large parent body with recent geologic 
activity, Mars was only rece~ltly accepted as 

bp Alu(-) haplotype to have been recently ntro- 
duced Into preexisting H, erectus populations and 
ach~eve the frequenc~es seen today The low fre- 
quency of the 90-bpAu(-) chromosome In all Asan, 
Pac~fc island, and New World populations argues 
aganst hgh levels of gene flow from European or 
Mdde  Eastern populatons Into these reglons before 
h~stor~cal t~mes. 

48. M Satkin. Genetics 139. 457 (1995). 
49. We thank A. Delnard for provldng nonhuman prl- 
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velocity; yet, as of 1982, there were six S N C  
falls but no  lunar meteorites. Then  the lunar 
~neteorite ALHA81005 was recognized 
among Anta rc t~c  meteorites (4), and be- 
cause of our familiarity with the returned 
Apollo and Luna samples, the o rg in  of this 
meteorite was i~nmediately accepted. With  
Illore Antarctic meteorites 15) being recov- . , 

ered, we c~~r ren t ly  have a dozen ~nembers of 
each class, although they comprise only 
0.1% of all meteorites. T h e  SNCs are now 
ge~lerally aclznowledged to have orig~nated 
o n  Mars. after further exalnination of their 
composition, especially the virtually perfect 
isotop~c match between gases trapped within 
one of thein and the ~nar t ian atmosphere, as 
determined hy the Viking landers (6). Thus, 
we use the tern1 "martian meteorites" for the 
SNCs and ALH84001, the latter being dis- 
tinct froin the S N C  classificatio~l (7). 

W e  call learn about the dvnalnics of the 
inner solar system by coillparing the mea- 
sured transfer ages of such lneteorltes against 
orbital histories. Soine of the ideas presented 
below are not new, but our dy~lamical sim- 
~ ~ l a t i o n s  irnpro1.e o n  previous work that, be- 
cause of comp~~ta t iona l  lilnitations of the 
time, used Monte Carlo calculations rather 
than full orbital integrations. In  principle, 
some aspects of the cratering process itself 
call also be constrained (8). 

A cosmic ray exposure (CRE) age (9)  of 
a meteorite is the time during which the 
object was bomharded hy energetic cosmic 
rays in space. D ~ ~ r i n g  this exposure, measur- 
able radioactive isotopes accumulate, allow- 
ing the iiuration of the  exposure to be esti- 

B. J Gladman and P. Lee are in the Department of As- their source because it was thought ~~l l l ikely  illated (Table 1 ) .  Most lunar ~neteorites 
tronomy' Cornel University, Ithaca' Ny 14853, USA A, that rocks could survi\~e being hlasteil off of were delivered to the Earth in a far shorter 
Burns IS in the Departments of Astronomy and Theoret- 
cal and ~ ~ ~ l i ~ d  ~ ~ ~ h ~ ~ ~ ~ ~ ,  cornel ~ ~ ~ ~ ~ ~ ~ ~ t ~ ,  thaca, ~y a planet (3). Another argument against a time than ally lnartian meteorite, and the  
14853, USA. M. Duncan IS n the Department of Physics, lnartian origin was that if these objects were ~ l ~ a r t i a ~ l  ~neteorites 11a\~e an  average mass 38 
Queen's Unlverslty~ Kingston' ON K7L 3N6' Canada. H, launched f r o ~ n  Mars, surely there should be tiines that of the lunar ones. T h e  i s s ~ ~ e  of 
F. Lev~son IS w~th Geophys~cal Astrophys~cal and Plan- 
etary Sciences, Southwest Res'earch lnstltute,'1050 W a l  ~ n a n y  I ~ O P  ~neteorites co~ning from the pairing (1 0) is unlikely to affect these 
nut Street, Suite 429, Boulder, CO 80302, USA. moon, which is closer and has a lower escape trends significantly. 
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T h e  CRE studies reveal that most lunar lunar surface, we find that a large majority 
meteorites have been launched from rather of the escaping ejecta even t~~a l ly  achie\,es 
shallow depths (within several meters of the heliocentric orhit (1 2) .  Of the  material that 
lunar surface), whereas all martian meteor- does not,  tnost hits the  Earth within a few 
ites seem to have been shielded bv at least decades. 
se\,eral meters of rock before acquiring any 
CRE (1 1).  P r e s ~ ~ ~ l ~ a h l ~  this indicates that 
larger impact events were required to pro- 
duce the martian meteoroids: because such 
impacts should he rarer, one must explain 
why roughly equal numbers of lunar and 
martian meteorites have heen fo~lnd. T o  
address this cl~~estion, we need to understand 
the efficiency of delivery of the meteoroiils 
to the Earth once they have been l a ~ ~ n c h e i l  
from their narent bodies. Wi th  the advent of 
faster computers and impro\~ed numerical 
algorithms, we have heen able to follow 
ilirectly the motion of interplanetary partl- 
cles o\,er the necessarv time scales. 

Delivery from the moon. T o  escape the 
moon's gravitational field, the  initial s ~ e e d s  
v, of launched ejecta must exceed the lunar 
escape velocity (vest - 2.38 km/s). For 2.38 
< v, < 3.5 km/s, particles may not have 
enough energy after leaving the  moon to 
immediately break free of the  Earth's gra17- 
itatio~lal field and reach helioce~ltric orhit; 
instead, these lnay first pass through a phase 
of geocentric orbit. Followi~lg the paths of 
thousands of oarticles launched at numer- 
OLIS 11nifor1~11y distributed locations o n  the 

W e  then followeil the particles that es- 
cape to heliocentric orbit with another nu- 
nlerical integrator (13) ,  accounting for the 
gravitational effects of the  planets from 
 mercury through Saturn, until the particles 
impact a terrestrial planet, cross Jupiter's 
orbit, or have their perihelia lowered to the 
sun's \ 7 ~ c ~ n ~ t y .  Lunar meteoroiils that escape 
to hel iocentr~c orbit periodically re-ap- 
proach the  Earth and are scattered by its 
gravitational fleld to new orbits, with some 
striking the  Earth after one or more scatter- 
lngs. Depending o n  the  launch speed from 
the  moon, 25 to 50% of the  heliocentric 
material impacts the Earth in the first mil- 
lion years ( 1  Myr), the percentage of return- 
ing Inaterial dropping ~nolloto~lically as the 
initial ejection velocity rises from 2.4 to 3.2 
km/s (Fig. 1 ) .  T h e  steep initial ilecline in 
the  population is alll~ost entirely the result 
of collisions with the  Earth; early in the  
simulation, Earth's gravitational cross sec- 
tion (14) is large because the  ~neteoroids 
have low relative velocities, having barely 
escaped Earth's gra\,ity well. As the evolu- 
tion proceeds, particles that do  not hit the  
Earth are scattered to higher relative veloc- 

Table 1. Properties of the lunar and marian meteor~tes (9). The SNCs w~th t ,  given as fall or find have 
Earih residence times that are neglig~ble compared to ther 471 CRE ages. All of the numbered meteorites 
are from Antarctca. The last two meteorites of each class were only recently Identified. This table updates 
table 1 in ( 7  I), correcting a typo on the mass of EET79001. The 0.2-Myr 471 age of Calcaong Creek IS 

favored by Swindle et a/. (35). The QUE93069 data are reported in (36). The 471 ages for QUE94281. 
ALH81005. and EET87521 are from a thermoluminescence study (37). Errors in the 4~ ages are =20 to 
30%. 

Meteorite Mass (kg) 471 age (Myr) ice (My,) 

EET87521 
ALH81005 
Y-791197 
Y-793274 
MAC881 04/5 
QUE93069 
Calcaong Creek 
Asuka-881757 
Y-793169 
Y-82192/86032 
QUE94269 
QUE94281 

EET79001 
ALH77005 
Zagam1 
Shergotty 
LEW88516 
Governador Valadares 
Chassigny 
Nakhla 
Lafayette 
ALH84001 
QUE94201 
Y-793605 

Lunar meteorites 
0.031 <0.001 <0.06 
0.031 0.01 t 0.005 0,009 
0.052 <0.019 0.06 i 0.03 
0.0087 <0.02 <0.02 
0.724 -0.04 0.23 i 0.02 
0.021 <0.1 or 1.9 <0.07 or 0.1 8 
0.01 9 0.2 or 3 t 1 <0.07 
0.442 0.9 -t 0.1 <0.05 
0.0061 1 .I i 0.2 <0.05 
0.71 2 9 i 2 -0.09 
0.0032 Paired w~ th  QUE93069 
0.0234 0,001 ? 

Martian meteorites 
7.94 -0.7 0.01 1 
0.48 -2.6 0.2 

18 -2.8 fall 
4 -2.8 fall 
0.01 3 -3.0 <0, l  
0.16 -12 find 
4 12.5 -t 1.7 fall 

40 12.9 2 1.7 fall 
0.80 -14 f~nd 
1.93 -15 0.01 1 
0.01 20 ? ? 
0.01 8 ? ? 

ities, and so the  collision rate drops. Thus, 
of the  particles that will hit the Earth with- 
in 10' years, more than two-thirds (includ- 
ing those that never escape geocentric or- 
bit)  do so in less than 50.000 vears. After a , , 

few hunilred thousand years, collisions oc- 
cur with Earth and Venus at ahout euual 
f r eq~~ency .  T h e  population's slower decline 
after 1 Mvr is due to these collisions, as well 
as increasing fractions of particles that cross 
Tut3iter's orbit or are driven into the sun. " .  
T h e  swarm of lunar ~neteoroids in heliocen- 
tric orbit spreads with time throughout the 
inner solar system because of gravitational 
scatterings hy the planets (Fig. 2) .  T h e  ini- 
tial diffusion along the  q = 1 astronomical 
ah nit (ALT) and Q = 1 A U  lines (perihelion 
and aphelion, respecti\~ely) is driven hy 
multiple close approaches with solely the  
Earth. After ahout 1 Mvr, the  articles no  , , 

longer have ally special affinity to Earth, 
havine hail encounters with more than one 
planet. W e  have obser\,ed the  transfer of 
lunar meteorites to Mars in our simulations. 

Our  simulations yield an  expected deli\,- 
cry spectrum ( in  time) of the  l ~ ~ n a r  meteor- 
ites (Fig. 3 )  that can be compared to their 
4~ CRE ages (Table 1 )  (9). T h e  2.4-km/s 
s i~nu la t io~ l  n~atches  the data reasonably 
well. In  the  3.2-km/s simulation, less than 
one-fifth of the hypothetical ~neteorites 
reach Earth in less than 20,000 years, 
whereas rouehlv half of the actual lunar me- 
teorites do. ~ l t l l o u g h  the statistics are based 
~111 small numbers, this res~llt suggests that 
the velocity spectrum of escaping fragments 
must be so steep that only a small fraction of 
the lunar meteoroids that escane the moon 
do so at speeds greater than 3 km/s. In \71ew 
of the ili\,erse geochelnistry of the extant 
samples and their relatively young ages, it 

Mars 1 
T - -- 
i 

I 

Time (Myr) 

Fig. 1. The percentage of test partcles remaining 
as a function of tme for helocentric simulations of 
ejecta froln the moon, Mars, and Mercury. The 
inita ejecton veocty for the lunar simulation was 
2.4 kmk ,  whereas v, = 1 km/s (15) cases are 
plotted for the Mercury and Mars s~mulat~ons. 
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Fig. 2. Evouton of 324 parti- 
cles escaping from the Earth- 
moon system after being 
launched from the moon w~ th  
v ,  = 2.4 km/s. Each polnt 
gives the orbital semlmajor 
axls (a) and eccentricity (e) of a 
surviving par ice  at the gven 
t m e  after launch. The web of 
curves indicate where the 
per~hel~on q = a ( l  - e) or a- 
phelon Q = a ( l  ' e) of a par- 
t~cle would concide with the 
semimajor axis of one of the 
terrestrial planets. Pariices to 
the right of both curves ema- 
natng from a planet's a have orbits that can cross that of the planet 

appears that tnatly lunar meteorites are 
launched in frequent cratering events (at 
least as often as every lo4 years). Because the 
nulnber of lunar impactors drops off quickly 
with increasing impactor size and therefore 
energy, these comnlon Impacts must he small 
ones, resulting 111 craters with dianleters of 
nluch less than 10 knl (11). This frequent 
liberation of impact ejecta is not found for 
martIan ejecta. 

Deliverv from Mars. T h e  recovered 
martian meteorites have taken much longer 
to reach the  Earth than the lunar ones 
(Table I ) ,  simply because the  orbits of most 
eiected nlartian meteoroids do not initiallv 
cross that of the  Earth. However, because of 
the  eccentric orblt of Mars, the  v, (15) of 
escaping particles need only he about 2.3 
km/s (corresponding to a n  ejection speed of 
5.5 km/s, merely 10% greater than the es- 
cape speed) for some ejecta to be on orhits 
that llnmedlatelv cross Earth's. Thus, fast 
transfers are occasionally possible, and the 
short 4~ CRE ape of 0.7 Mvr for EET79001 
is not  especially surprising. In  fact, transfers 
as rapid as 16,000 years were observed in 
our simu~ations.  

T h e  ground-hreaking work of Wetherill 
(1 6 ) ,  who a decade ago addressed the deliv- 
ery efficiency of martian meteorites using 
Monte Carlo sim~~lations,  presents, in hind- 
sight, a puzzle given what we now know of 
the 471 CRE apes of these meteorites. Even 
though collisional destr~lction was included 
in those sirni~lations, the maioritv of martian , , 
objects arrived at the Earth having taken 
longer in their journeys than the recovered 
meteorites with the greatest CRE age (15 
Myr), unless the mean ejection velocities are 
very large (>6.4 km/s). Because the lunar 
res~llts appear to indicate that proportionally 
little material is launched at sneeds ereater 
than 125% of the escape speed, we expect 
that most martian meteoroids sho~lld be 
launched at less than 6 km/s. Of course, it 
tnap be that the regolithic structure of the 
lunar surface is resnonsible for the sharn 
drop-off with velocity and that this result 
does not apply to Mars (1 7). 

Eccentricity 

W e  simulated the  gravitational evolu- 
tion of 2100 particles escaping from Mars at 
various speeds. These simulations included 
the  gravitational effects of Venus through 
Neptune. T h e  initial coniiitions correspond 
to uniform cratering, and previous work 
(1 6 )  has shown that the dellvery efficiency 
is insellsitive to the  orhital phase and cur- 
rent orhital elements of Mars. T h e  deple- 
tion rate of the ejected particles (Fig. 1)  is 
different from the  lunar and mercurian cas- 
es because, even at this low ejection speed, 
re-collision with Mars is not a significant 
removal mechanism. Of the  few Mars re- 
impacts that do occur, more than 90% take 
place in the  first few million years; once the  
relative velocities increase above the escape 

0 0.2 0.4 0.6 0 . 8  1.0 0 0.2 0.4 0.6 0 . 8  1.0 
Eccentricity Eccentricity 

Time in space (years) 

Fig. 3. Cumulative plot of the CRE age spectrum 
expected for the lunar meteorites. The curves 
show (as a funct~on of time) the cumulative num- 
ber of meteorites that have struck the Earth (as a 
fraction of those that do within 10 Myr). The solid 
curves show predictions from two simulations dif- 
fering only in the launch velocity from the moon. 
The dotted line connects the data po~nts from the 
lunar meteorites (34). Four of these meteorites 
have only upper limits (indicated by arrows) on 
their time in smce. 

velocity (14) ,  collisions with Mars remove 
a n  insigtlificant fraction. For higher ejec- 
tion speeds, typically less than 2% of the 
narticles re-collide. 

T h e  delivery efficiency of martian tneteo- 
roids to Earth for v.- = 1 km/s is 7.5%, with 
about one-third of these occurring in the 
first 10 blyr (Tahle 2). Raising the eject1011 
velocity causes a small increase in the dellv- 
erp efficiency (Tahle 3). Our  yields are about 
an order of magnitude larger than those seen 
in Monte Carlo silnulations (16).  T h e  dis- 
crepancy can be understood by examining 
Fig. 4, which shorvs how the orbits of the 
escaved eiecta evolve after launch. T h e  nar- 

a 

ticles remain in the  vicinity of blars (whose 
orbital semimajor axls is a = 1.5 A U )  only 
for the flrst 0.1 blyr. By 1 Myr, several 
interesting phenomena have occurred: a ferv 
particles have diffused down the Q = 1.5 
AU line, and some of these have had their 
orbits drastlcallp modified by the Earth (hav- 
ing crossed the q = 1 ,4U line). T h e  diff~l- 
slon LID the n = 1.5 AU line is halted bv the 
presence of two nonlmear, second-order sec- 
ular resonances near a = 1 16 to 1.7 AU 118). 
These resonances cause oscillations with pe- 
riods of 10' years in the eccentricities of 

Table 2. The fates of meteorods after a v, = 1 
km/s launch from Mars and Mercury The smula- 
t o n  for Mars included 900 paricles and ran for 
100 Myr; the smuaton for Mercury included 200 
particles over 30 Myr. No coll~sional effects were 
included. The position of Mercury was not tracked 
in the martan smuat~on,  so collisions with it were 
not possble. 

Meteoroid fate 

Pariices (% of total) 
from parent body 

Mars Mercury 

Impact Mercury 
Impact Venus 
Impact Earth 
Impact Mars 
Sun-grazng 
Reach Jupiter 
Surv~vors 

N.A. 76 
7.5 6.5 
7.5 0.5 
9.0 0 

38 4 
15 2 
23 11 
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particles in this region up to Earth-crossing 
values (e - 0.4), thereby raising the efficien- 
cy of delivery for nlartian meteoroids. Be- 
cause these resonances were not incorporat- 
ed into earlier Monte Carlo simulations, it is 
not surprising that our results differ. Further- 
more, delivery of particles to the q = 1 AU 
curve allows their semimajor axes to be 
raised to the inner edge of the asteroid helt 
(a = 2.1 A U ) ,  where the powerf~ll secular 
resonances v6, vi, and v I6  operate; these 
resonances are capable of driving the eccen- 
tricities of test particles to unity, at which 
point the particles strike the sun (19). 

Sun-grazing is the  dotninant loss mech- 
anism after 10  Myr. Wi th in  100 Myr about 
40% of the  particles have been driven into 
the  sun, Inore than  twice the  nurnber re- 
tnoved from the  system by crossing Jupi- 
ter's orbit. These two effects ~ ~ l t i t n a t e l ~  
deplete the  swarm and yield a n  allnost 
linear decline in the  number of surviving 
meteoroids (Fig. 1) ;  this partly explains 
why 110 martian meteorites have 4~ ages 
older than  15 Myr. T h e  expected C R E  age 
spectrum for our purely gravitational N- 
hody siln~llation (Fig. 5 )  does no t  agree as 
well with the  S N C  data as in the  lunar 
case; only a little more than  half of the  
nleteorites delivered in the  simulation ar- 
rive within the  15-Myr upper bound of the  
recovered meteorites. This disagreement is 
not  surprising because Inany orbits extend 

out to  the  asteroid helt (Q > 2.1 A U ) ,  and 
so the  meteoroids are prone to  catastroph- 
ic collisional disruption, with a half-life of 
1 to 10  blyr (20) .  T h e  mean time spent in 
the  main belt as a filnction of transit time 
was cornvuted from the  si~nulations and 
convolved into the  delivery spectruln (Fig. 
5 ) .  W i t h  such a collisiotlal model, t he  
N-body sitnulation rnatches the  C R E  data 
suite well; however, t he  collisions lower 
the  delivery efficiency for the  zl, = 1 krn/s 
case from 7.5 to  4.4%. 

Thus, the  age distribution of the  martian 
nleteorites is consistent with a tnodel in 
lvhich all fragments are launched at speeds 
rnodestlp above the  escape velocity as small 
bodies and are delivered indeoendentlv to  
Earth. T h e  simulated meteorites delivered 
in the first 15 Mvr all have entry velocities 
into Earth's atmdsphere in the  t'ange of 11 
to  17 km/s, in agreement with the ahlation 
data for the  SNCs (21).  However, our re- 
sults do not explain the apparent clustering 
of the 4.rr CREs into a t  least three groups: 
0.7 Myr (one object), 3 blyr (four ohjects), 
and 13 t 2 Myr (five objects). Are these 
groups a result of source-crater pairing (10,  
22) or, alternatively, a result of separate 
collisional fragnlentations of large meteor- 
oids in snace 123 ) ?  T h e  martian meteorites ~, 

share much closer petrologic affinities than 
the lunar meteorites (7): the  3-Myr group 
contains only shergottites, and three of the  

Table 3. Transfer efficiencies for Mars ejecta in the first 15 M y r  after launch, as a function of the ejection 
speed v , ,  with no correction for collisional destruction. A simulations used 300 particles. Sun-grazing 
a id  Jupiter-crossing only begin to operate efficiently after 10 M y r  and thus are under-represented here 
(compare with Table 2). 

Ejection speed 
(km/s) Efficiency (%) (in f~rst 15 Myr)  

V z  Suriace Earth Venus Mars Sun Jupiter 

Fig. 4. Evolution of 200 par- 
ticles launched from Mars 
with v, = 1 km/s. See the 
caption to Fig. 2. The curve 
n the upper right of each 
panel marks aphelion at Ju- 
piter (5.2 AU). 

13-blyr group are the  only three nakhlites. 
In  our view, these age clusters likely repre- 
sent individual impact events into distinct 
source terrains 123 ). ~, 

A previously consiilered hypothesis 
i 2 4 ) L t h a t  all the  martian meteorites are , , 

iieriveci from recent catastrophic fragmen- 
tations of large bodies that were launched " 

200 blyr ago and then stored in space-is 
rendered verv unlikely because our simula- 
tions detnonstrate that few parent hodies 
can dynarnicallp survive for this time owing 
to the  efficiency of meteoroid destruction 
by sun-grazing. This model would also have 
to exnlain why 1i) there are n o  meteorites , ~, 

from the  upper few meters of the  parent 
meteoroids, (ii) n o  inlpacts more recent 
than 200 blyr have been sampled, and (iii) 
o~nlv shergottite parent meteoroids have 
heen disruited in ;he last 3 Myr, and none 
before. Our  results show that the sinlvler 
model, which produces exclusively stnall 
meteoroids, explains all of the CRE evi- 
dence, a l tho~lgh source-crater pairings and 
relative surface properties of the  moon com- 
pared with blars may be important. T h e  
issues of whether the  groupings represent 
distinct impact events, why such groupings 
occur for Mars hut not for the  moon, and 
why there are euual n~lrnbers of lunar and 
martian meteorites (1 6) remain. 

Delivery from Mercury, Venus, and 
Earth. Nulnerical s im~~lat ions  indicate that 
particles iliff~lse readily thro~lghout the inner 
solar svstetn. and so we now consider the  
likelihckd that pieces of other terrestrial 
planets might also have come to Earth. It 
should be possible to liberate meteoroids 
from the surface of blercurp, as its escape 
velocity is lower than that of blars (14). 
However, the dytlalnical transfer of this ejec- 
ta to Earth is substantially Inore difficult 
because Mercurv lies deev within the sun's 
gravitational well. Ignoring resonance ef- 
fects, a series of properly timed Mercury scat- 
terings are needed for the nleteoroids to be 
pushed across Venus's orbit and then to 
Earth. Monte Carlo calc~~lat ions  116. 25) ~, , 

have found the total delivery efficiency to 
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Earth to be o n  the order of in 10' pears. 
W e  tracked 200 particles launched from 

Mercury in raniiom iiirections having .tl, = 

1 km/s after escaping from the  planet (15) .  
T h e  re-accretion rate is initially very high 
(Fig. I ) ,  again because of the low relative 
velocity of the  particles with respect to  
blercury (14).  T h e  lunar and mercurian 
cases are similar because, compared to  the 
planetary orbital speed, the  initial random 
velocity is very small. For blercury, about 
three-quarters of all of the launched parti- 
cles were re-accreted during the 30-Myr 
simulation (Table 2). 

Just one of the 200 particles was found to 
hit the  Earth, after 23 blyr. This 0.5% 
delivery efficiency is 50 times higher than 
previously suggested (16) but is based o n  
poor statistics; it is about an  order of mag- 
nitude smaller than the  efficiency for Mars. 
If we acceDt this efficiency and if the  mer- 
curian imiactor flux is coinparable to  that 
of blars 126), the  existence of 12 martian 
nleteorites should lead us to expect a few 
mercurian meteorites. However, a ~ u r e l y  

& ,  

gravitational model map not be sufficient to 
accurately simulate the  transfer of material 
from Mercury to Earth. Radiation forces in 
the  inner solar system cause significant or- 
bital evolution over tens of  nill lions of 
years, times like that required for our single 
iueteoroid to reach Earth. Orbital collapse 
as a result of Popnting-Robertson (P-R) 
drag a t  Mercury's heliocentric distance 
takes only 5 Mpr (27) for a meteoroid 1 cin 
in radius with a density of 5 g/cm3. O n  the  
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Fig. 5. Cumulatve plot of the expected CRE age 
spectrum of the mart~an meteor~tes The curves 
show (as a funct~on of tme) the cumulat~ve num- 
ber of meteortes that have struck the Earth (as a 
fracton of those that do wthn 40 Myr) The s o d  
and dotted curves show predcted spectra one 
ncorporat~ng catastroph~c coll~s~ons ( s o d )  and 
the other w~thout (dotted) The dashed n e  con- 
nects the data ponts from the martIan meteortes 

other hand, the Yarkovsky effect, which 
dominates P-R effects for particles of this 
size with spin periods longer than 1 s (27) ,  
may induce some iue rc~~r ian  meteoroids to 
spiral outward to Earth (28).  However, mer- 
curian meteoroids may be catastronhicallv 
fragmented by dust-sized impactors: which, 
because of nravitational focusing. increase " L 2 ,  

significantly as the sun is approached. Col- 
lisional lifetiiues of 100-g bodies a t  Mercu- 
ry's distance are estiiuated to be less than 
10' years (29).  Because of these complica- 
tions, the likelihood of finding inerulrian 
meteorites is difficult to quantify. 

T h e  identification of meteorites from the 
moon and blars has allowed scientists to 
consider more seriously the possibility of 
finding meteorites from Venus or Earth 
(hereafter. venusian and terrene meteorites. 
respectively). T h e  larger escape velocities of 
these planets will only be overconle by a tiny 
fraction of the ejecta, and then only in the  
larger and rarer impact events. T h e  difficulty 
of s~~ccessful ejections is heightened by the 
Dresence of the massive a tmos~heres  of Earth 
and Venus, because such atmospheres effec- 
tively screen out all crater-producing impac- 
tors below a certain thresholci size (30),  and 
l a ~ ~ n c h e d  fragments have to  plow back 
through the atmosphere (31).  O n  the basis 
of our siin~~lations,  we expect that the  re- 
accretion efficiencv bv the Earth of its own , 2 

ejecta would be several tiiues higher than 
Earth's accretion of venusian eiecta (25).  
Given the much more massive atmosphere 
of Venus, if venusian nleteorites are ~ossible ,  
then certainly terrene meteorites should be 
~ n u c h  more abundant. Thus we restrict our 
attention to  the latter. 

It may be problematic to distinguish ter- 
rene meteorites froin u~ltraveled material. 
P res~ l inab l~  only falls, or finds with pre- 
served f ~ ~ s i o n  crusts. would be readily ac- 
cepted as bona fide terrene meteo'rites; 
anomalous Earth rocks found on the  Ant -  
arctic ice sheet are probably our best hope. 
Because only massive rare impacts are ca- 
pable of launching such objects, the  Earth 
likely has not recently experienced an  
event capable of ejecting Earth rocks at 
greater than the  escape velocity. Thus, ter- 
rene meteorites should be co~n~ar i t ive ly  
rare in  the relatively young ( < 1  Mpr old) 
Antarctic ice sheet. 

Earth inlpacts have ejected tektites (im- 
pact glasses), some of which may have been 
launched along suborbital trajectories arch- 
ing above Earth's atmosphere before re-en- 
try (32) .  W i t h  slightly higher speeds, other 
tektites might have escaped the  Earth's 
gravitational field. Such objects woulci have 
a high probability (-30 to 50%) of rapidly 
r e - im~ac t ine  the Earth. Isolated tektite 
finds ( that  is, not  part of a strewn field) 
W O L I ~ ~  he worth exanlining for evidence of a 
brief (<<I Myr) CRE (33).  A proviso in 

this picture is that tektites are not strictly 
analogous to the relatively lightly shocked 
lunar and martian meteorites. 

T h e  orbital histories of terrene meteor- 
oids, if any exist, are also of interest in view 
of the  enormous efforts expended to sterilize 
spacecraft to prevent the  contamination of 
blars by terrestrial organisms. This steriliza- 
tion would make little sense if terrestrial 
iuicroorganisms have already been carried 
to  blars aboard terrene meteorites (31).  
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