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Many remarkable properties related to chaos have been found in the dynamics of 
nonlinear physical systems. These properties are often seen in detailed computer 
studies, but it is almost always impossible to establish these properties rigorously for 
specific physical systems. This article presents some strange properties about basins 
of attraction. In particular, a basin of attraction is a "Wada basin" if every point on the 
common boundary of that basin and another basin is also on the boundary of a third 
basin. The occurrence of this strange property can be established precisely because 
of the concept of a basin cell. 

If we look at a map of the world, we see a 
division into regions (countries and states). 
Typically, a point on the border of one 
country is on the border of only two. Three 
countries can have at most two points 
where all three meet if each country is 
corrected (that is, it consists of a single 
piece) (Fig. 1A). Imagine trying to draw a 
picture of three nonoverlapping regions in 
the plane, each connected, which have the 
property that every border point of each 
region is a border point of all three regions. 
Surprisingly, such regions occur naturally in 
dynamics (Fig. lB), the study of how pro- 
cesses change with time. 

Discrete-Time Processes 

The processes described in this article are 
two dimensional. For example, as a pendu- 
lum swings, the angle between the pendu- 
lum arm and the rest position varies, as does 
its angular velocity. The state of the pen- 
dulum at a given moment is its angle and 
angular velocity at that time. In 1976, as- 
tronomer Michel Henon gave the following 
mathematical rule for how a   articular non- 
physical, two-dimensional process evolves 
with time. Two numbers a and b are select- 
ed with constant values, for example a = 
-0.45 and b = 0.8. The state of the process 
is a pair of numbers (x, y), each of which 
change with time. Henon's rule is that if (x, 
y) is the state of the process at time t, then 

0). We say (x, y) comes from (x', y'). This 
process is called time-reversible. If the pro- 
cess is time-reversible, then the process re- 
sulting when time is reversed is called the 
time-reversed process. 

Notice that Henon's rule tells us where 
the state is at integral times but does not 
tell us where it is at intermediate times like 
1.5. Such processes are called discrete-time 
processes. Discrete-time processes are sim- 
ple models for how processes evolve with 
time. The discrete-time processes we study 
mirror aspects expected in many physical 
experiments. 

The Henon process is a prototype for the 
study of much more complicated processes, 
such as the dynamics of a pendulum. It does 
not tell us anything about the actual mo- 
tion of a pendulum, but these systems have 
phenomena in common. Similar phenome- 
na can be observed in biology, chemistry, 
and economics. The Henon process is to 
the mathematician or physicist what the 
laboratory rat is to the physician: it is of 
interest only because of what it suggests 
about real problems. 

Basic Notions in Dynamics 

Chaos theory ( I )  began with a particular 
study of a two-dimensional process. In 
1887, King Oscar I1 of Sweden and Norway 
offered a prize of 2500 crowns to whomever 

at t + 1, the state will be the pair of Fig. ,. (A) Three con- 
numbers (a - xZ - by, x). Hence, for a = nected regions, There 
-0.45 and b = 0.8, the state (0.2, 0.3) at t are only two points that 
becomes (-0.73, 0.2) at t + 1. lie on the border of all 
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current state (x, y) at t (provided that b # a l l  three regions. If you 

draw a line in the ~icture 

could determine if the other planets in our 
solar system could resonate with the Earth 
to make it collide with another planet 
(Mars, for example) or run off into the 
empty interstellar wastes. Poincare tackled 
the problem and won King Oscar's award 
for his work in 1889. By studying a special 
case, Poincare reduced the problem to the 
study of a process in a plane. 

To discuss Poincare's idea, we need to 
describe more of the elements of dvnamics. , . 
If a particular state (x, y) does not change 
when the process being studied is applied, 
then this state is called an equilibrium of 
the process. In the Henon process, the 
point (x*, y*) = (-0.3, -0.3) is an equi- 
librium. The trajectory of a state (x, y) is 
the collection of all states ~assed throueh as " 
the process is applied repeatedly. An equi- 
librium (x*, y*) is an equilibrium attractor 
if the trajectory of any initial condition 
near (x*, y*) approaches (x*, y*). For an 
equilibrium attractor A = (x*, y*), the 
collection of points whose trajectories go to 
A forms the basin of attraction of A (Fig. 2, 
A and B). 

An equilibrium (x*, y*) is a saddle point 
S if there are points whose trajectories ap- 
proach (x*, y*) as time increases and if 
there are other points whose trajectories 
approach the equilibrium (x*, y*) for the 
time-reversed process. The collection of all 
points whose trajectories approach S when 
the process is applied repeatedly is a curve 
called the stable curve of the saddle; simi- 
larlv. the collection of all ~ o i n t s  whose 

3 .  

trajectories approach S when the time-re- 
versed process is applied repeatedly is called 
the unstable curve of the saddle (Fig. 2C). 
For the Henon process with a = -0.45 and 
b = 0.8, the point (-1.5, -1.5) is an 
equilibrium point and a saddle point. The 
stable curve of this saddle is on the bound- 
ary of the basin of the equilibrium attractor 
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A = (-0.3, -0.3). The stable and unstable 
curves of a saddle point are invariant; that 
is, if a point is on the (un)stable curve of a 
saddle point, then its entire trajectory lies 
on this (un)stable curve when applying ei- 
ther the process or the corresponding time- 
reversed process. 

One of the important ideas in the study 
of dynamics attributed to Poincar6 is the 
fact that the stable and unstable curves of a 
saddle point may cross at points other than 
the saddle; these crossing points are called 
homoclinic points (Fig. 2D) (the saddle 
itself is not a homoclinic point). The key 
point of Poincare's analysis of the three- 
body problem (studied as a discrete-time 
process in a plane) was to show that homo- 
clinic points exist. However, the stable and 
unstable curves of a saddle ~ o i n t  do not 
always cross. For any process in a plane, the 
dynamic behavior near the homoclinic 
points is incredibly complicated. In this 
complexity, points on trajectories that re- 
turn exactly to their starting position after 
some time, known as periodic points, play a 
crucial role. The shortest time needed to 
return is called the period, and the trajec- 
tory of a periodic point is a periodic orbit. 
For example, if the first and second new 
states are different from the starting state 
but the state at t = 3 is the original state, 
then the starting point is a periodic point 
of period three, or a period3 point. The 
trajectory of a period3 point consists of 
three points and is a period3 orbit. In our 

examples, periodic orbits can be attracting 
or can be saddles having both stable and 
unstable curves. 

Fractal Basin Boundaries 

The complexity of the behavior near homo- 
clinic points can best be described as fol- 
lows. If the stable and unstable curves of a 
saddle point cross at (p*, q*), then every 
small disk centered at (p*, q*) includes 
infinitely many periodic points of different 
periods. Furthermore, Poincar6 showed that 
if there is one homoclinic point, then there 
are infinitely many; in fact, there are infi- 
nitely many in each of the small disks. In 
many cases, there is a saddle point (or saddle 
periodic orbit) on the boundary whose sta- 
ble and unstable curves cross. This crossing 
produces infinitely many homoclinic points 
(all of which lie on the boundary as well), 
which makes the boundary of the basin ex- 
tremely complicated. Such boundaries are 
called fractal boundaries (Fig. 2E). The fact 
that a basin boundaiy is fractal has impor- 
tant practical consequences. If the goal is to 
predict the long-term behavior of an initial 
point, it is necessary to determine which 
basin it is in. If the basin boundary is fractal, 
a large proportion of the initial points may 
be near the boundary, so we may not be able 
to discern which basin the point is in. 

In physical, biological, and economic 
models, one frequently encounters forced 
oscillators. The forced damped pendulum is 

an example. A grandfather's clock has a 
pendulum bob that is a forced damped os- 
cillator. It is forced to keep moving by 
weights in the clock. The forced damped 
pendulum is similar but can swing through 
360". The angle between the pendulum arm 
and the rest position and the arm's angular 
velocity are the two variables that deter- 
mine the state of the forced damped pen- 
dulum. Imagine that an impulse is imparted 
to the bob once each second so that the bob 
keeps swinging. If a strobe light flashes once 
each second, one can see the angle of the 
pendulum and measure the angular veloci- 
ty. The flashing strobe light makes this a 
discrete-time process: we only observe it 
once each second. This discrete-time pro- 
cess is called a stroboscopic process for the 
forced damped pendulum. Depending on 
how hard the pendulum is forced, it can 
have one equilibrium corresponding to the 
bob rotating clockwise a full 360" each 
second. This is an equilibrium for the stro- 
boscopic process because at each flash, it is 
always in the same position and has the 
same velocity. Another equilibrium would 
correspond to counterclockwise rotation. 
These equilibria could be either attractors 
or saddles. When the two equilibria are 
attractors, one can plot the corresponding 
basins of attraction (Fig. 2B). 

Our group and scientists elsewhere have 
been studying basins with fractal bound- 
aries, and a number of properties have been 
discovered (2). The most obvious property 
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is that there is a disk in the basin (centered 
at the attracting equilibrium). A point is in 
the basin if its trajectory enters that disk. 
The second property is much less obvious: 
the basin of an equilibrium attractor of a 
time-reversible map is connected in the 
sense that any two points in the basin have 
an arc that lies entirely in the basin and 
extends from one point to the other. The 
curve may be long and winding and can be 
chosen in a variety of ways. Sometimes the 
basins are extremely complicated. 

Strange Boundaries and 
Wada Basins 

Even more complexity can occur in rather 
simple processes. Let us be more precise. A 
point is on the boundary of a basin if every 
disk centered at that point contains points 
of at least two basins. If a point is on the 
boundary, then its trajectory is on the 
boundary. One can imagine situations for 
which a boundary point of a basin is on the 
boundary of at least two other basins (Fig. 

I 
Fig. 3. The three Wada basins for 
theforCeddampedpsndukffn 
(shown h yellow, red, and blue). 
Each is a can- region. (A 
m E) Eklxdve enlwe- 
ments of the small bax in the pre 
cedkyl figure. l=!JId-sf - 
ments of the boundary simply re- 
v e a l i n a e a s e d w .  

Fig. 4. The three Wada basins 
for the HBnon process. The 
Henon process for which a = 

0.71 and b = -0.9 has three 
basins of attraction, which are 
colored gray, green, and red. 
The gray basin is the collection 
of initial states whose trajecto- 
ries diverge when time in- 
creases. The green basin has 
a period-2 attractor and con- 
sists of two connected re- 
gions, whereas the red basin 
has a period-6 attractor and 
consists of six connected re- 

1A). Examples suggest that there are only 
finitely many such points. However, in 
1910, Brouwer constructed a mathematical 
example of three regions such that every 
boundary point is a boundary point of all 
three regions (3). Independently, Yon- 
eyama gave a similar example in 1917, at- 
tributing it to "Mr. Wada"; this example 
has come to be called "Lakes of Wada" (4). 
As originally presented, these examples 
have nothing to do with dynamic systems. 
It is hard to imagine that such a configura- 
tion of three basins could exist for simple 
dynamic processes. Kennedy and Yorke (5) 
discovered that such "Wada basins" do oc- 
cur in some simple processes. It is possible 
to have three or more basins such that everv 
basin boundary point is on the boundary of 
at least two other basins. Such a basin is 
called a Wada basin (6). In other words, no 
matter how close you zoom in on a bound- 
ary point, all three basins would be in the 
detailed picture. They were unable to prove 
Wada basins occur except in rather special 
circumstances, but on the basis of pictures 

of basins. Kennedv and Yorke sueeested -- 
that the ~ a d a  basins appear to exist even 
in the forced damped pendulum (5). 

Basins of Trapping Regions 

Recently, by creating the idea of the basin 
cell, we found an approach to fractal basin 
boundaries that gives a better understand- 
ing of both how basins are structured and 
when Wada basins occur (6, 7). A succes- 
sion of enlargements of basins may suggest 
that they are Wada basins (Fig. 3), but no 
such sequence is a proof. We must guarantee 
that the complicated structure of the basins 
continues no matter how many magnifica- 
tions are made. If we are onlv interested in 
determining that the boundary is fractal, 
then we onlv need to look for a saddle in the 
boundary, a saddle with homoclinic points. 
Our goal is to present a similar signature of 
the existence of Wada basins. 

Here we limit ourselves to two examples 
of vrocesses with Wada basins. Such exam- 
ples are common. Our first example is the 
Henon vrocess witha = 0.71 and b = -0.9. 
which has three basins of attraction; call 
them the gray, green, and red basins (Fig. 
4). The gray basin is the set of all points 
whose trajectories diverge when the process 
is applied repeatedly and is called the basin 
of infinity; the green basin includes a peri- 
od-2 attractor: and the red basin includes a 
period-6 attractor. The gray basin is con- 
nected, the green basin consists of two con- 
nected regions, and the red basin consists of 
six connected regions. Our second example 
concerns the stroboscopic process of the 
forced damped pendulum. It has three ba- 
sins-the yellow, the blue, and the red-all 
of which are connected (Fig. 3). In order to 
identify Wada basins, we need to introduce 
the concept of a trapping region. 

A trapping region is a region from which 
points cannot escape when the process is 
applied. For example, if the image of the 
boundary of a region is strictly inside the 
region, then the region is a trapping region. 
The basin of a trapping region is the col- 

gions. Successive enlargements (A through C) show incredible complexity at small scales. Points on the boundary between two basins are in neither basin. A 
basin is a Wada basin if any point that is on the boundary between two basins is also on the boundary of the third basin. 
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lection of points whose trajectories ulti- 
mately enter the interior of that region. 
From now on, we say that a basin is the 
collection of initial conditions whose tra- 
jectories eventually enter the interior of 
some specified trapping region. In our ap- 
proach to the theory of basins, we examine 
stable and unstable curves of saddle points 
(or saddle periodic orbits) and their inter- 
sections. We look for trapping regions that 
are bounded by stable and unstable curves. 

Basin Cells and the Occurrence 
of Wada Basins 

To show that certain basins are Wada ba- 
sins, we first define a cell to be a connected 
region (Figs. 5 and 6). The cell's boundary 
consists alternately of pieces of the stable 
and unstable curves of some ~eriodic orbit. 
We say that this periodic orbit generates 
the cell. Most cells are not trapping regions. 
When a cell is a trapping region, we call it 
a basin cell. Examples can be found having 
two basins, each of whose trapping region is 
a basin cell. However, the interesting case is 
when there are three basins. We now state 
our theorem. Assume there is a basin with a 
basin cell. If one of the unstable curves of 
the periodic orbit that generates the basin 
cell passes through at least two other basins 
of attraction, then the basin is a Wada basin. 

We first turn to the example of the 
forced dam~ed  ~endulum. Each of the three . . 
basins has a trapping region that is a basin 
cell (Fig. 5). The basin cell of the yellow 
basin is a six-sided region and is generated 
by a period-3 saddle orbit; the two other 
basin cells are four-sided regions generated 
by period-2 saddles. The unstable curve of 
each of the points of the periodic trajecto- 
ries that generate any of these three basin 
cells intersects all three basins. Hence. all 
three basins of the forced damped pendu- 
lum are Wada basins; therefore, every point 
on the boundary of any of the three basins 
is also on the boundary of the remaining 
two basins (Fig. 3). 

In some cases of the Henon process, 
there is a cell that is disjoint from its image 
at t = 1, but its image at t = 2 is contained 
in the cell (this is the case for the ereen - 
basin). In such cases, we still say the cell is 
a basin cell even though it is truly a basin 
cell only for the current process applied a 
specified number of times. We concentrate 
on the green and red basins. The green 
basin is the basin of a basin cell (Fig. 6A). 
This basin cell is generated by three points 
of a period-6 orbit. In fact, this cell and its 
image at t = 1 (which is a cell too) are - 
disjoint, but these two cells together con- 
stitute a trapping region. If the unstable 
curve of any point of this periodic orbit 
intersects all three basins, then by our the- 
orem, the green basin is a Wada basin. 

Indeed, this is the case. Similarly, there 
exists a basin cell for the red basin generat- 
ed by three points of a period-18 orbit (Fig. 
6B). In fact, this cell and its images at t = 
1 ,2 ,3 ,4 ,  and 5 (each of which is a cell too) 
are disjoint, but these six cells together form 
a trapping region. The unstable curve of any 
point of this period-18 orbit intersects all 
three basins. Hence, the red basin is also a 
Wada basin. Furthermore, we can also show 
that the basin of infinity (the gray region) is 
a Wada basin. Therefore, all three basins of 
the Henon process for which a = 0.71 and 
b = -0.9 are Wada basins, so every point 
on the boundary of any of the three basins 
is also on the boundary of the remaining 
two basins; the boundaries of all three ba- 
sins coincide. 

In both examples, each of the three ba- 
sins is a Wada basin. There are also exam- 
ples of other processes for which there are 
three basins, one of which is a Wada basin 
whereas the other basins are not. Each of the 

three Wada basins of the pendulum example 
has a basin cell, and two Wada basins of the 
Henon example (the basins that have a 
periodic attractor) have basin cells. 

Basin cells tell us a great deal about the 
structure of the corresponding basin. For 
example, the six-sided basin cell of the yel- 
low basin in the pendulum example is gen- 
erated by a periodic orbit of period 3. This 
basin can be viewed as a central body (the 
basin cell) plus three channels that connect 
to it. These channels are infinitely long and 
wind in a very complicated pattern without 
ever crossing each other. The process ro- 
tates the basin by one third of a turn. The 
two remaining basins have a basin cell as 
the central body from which two channels 
extend. When the basin cell is generated by 
a period-2 orbit, the corresponding basin is 
the four-sided basin cell plus the two chan- 
nels that emerge from it. The channels vary 
greatly in thickness but generally get quite 
thin as they wander back and forth. Yet 

Fig. 5. Basin cells for the forced damped pendulum. A 
trapping region is a region from which a trajectory cannot 
escape once it has entered that region. Each of the three 
regions (blue, yellow, and gray) are bounded by parts of 
the stable and unstable curves of some specially selected 
periodic points and are trapping regions for the pendu- 
lum. Such regions are called basin cells. Basin cells char- 
acterize the structure of the corresponding basin. The 
six-sided basin cell of the yellow basin is generated by a 
periodic orbit of period 3. Therefore, this basin can be 

I 
viewed as the basin cell plus the three channels that 
connect to it. These channels are infinitely long and wind 
in a very complicated pattern without ever crossing each 
other. In the figure, the process rotates the basin by one 
third of a turn. When the basin cell is generated by a 
period-2 orbit (as with the gray and blue basins), the 

I 
I 

corresponding basin is the four-sided basin cell plus the two channels that emerge from it. The channels 
vary greatly in thickness but generally get quite thin as they wander back and forth. 

Fig. 6. Basln cells for the 
3 7 

Henon process. (A) The 
three dots lndlcate three ' 

perlod~c polnts of per~od . 
6 of the Henon process ' 
forwhlcha=O71andb a 

= -09 These three 
polnts are perlodlc 
polnts of per~od 3 for the 
"t~me-2" Henon pro- 
cess, that IS, the process 
resulting from two appll- 
cat~ons of the Henon 
process. The shaded re- \ f 
glon, bounded by parts - 
of the stable and unsta- 
ble curves of these three polnts, IS a cell The Image of the cell at t = 1 n a new cell located outslde of the 
flrst cell, but the Image of the cell at t = 2 IS contalned In the orlglnal cell. Hence, once a trajectory enters 
the cell, ~t IS trapped In thls cell when the process IS applled twlce Therefore, the cell IS a trapplng reglon 
for the tlme-2 Henon process Thls basln cell corresponds to the green basln of Rg. 4B. (B) The cell IS 

generated by three polnts of a per~od-18 orblt. When the Henon process 1s applled SIX tlmes, then these 
three polnts are penodlc polnts of perlod 3; that IS, they are per~od-3 polnts of the tlme-6 Henon process. 
The Images of the cell at tlmes t = 1,2,3,4,  and 5 are new cells located outslde the first cell, but the image 
of the cell at t = 6 IS contalned In the orlglnal cell Hence, the cell IS a trapplng reglon for the tlme-6 Henon 
process. The shaded reglon bounded by parts of the stable and unstable curves of the three perlodlc 
polnts 1s a basln cell for the tlme-6 Henon process that corresponds to the red basln of Rg 4C. 
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Global Patterns of Linkage Genetic Systems Studied 

W e  studied alleles from two tightly linked Diseq u i 1 i bri u m at the CD4 Locus ~narkers, located -9.8 lib apart, non-  
coding regions of the  CD4 gene o n  the  

and Modern Human Origins 
short 1) .  These arm of polvmorphic chromosome markers 12 (1 1-1 are 3 )  of (Fig. two 
types that e\yolve with differing rates. T h e  

S. A. Tish koff, E. Dietzsch, W. Speed, A. J. Pakstis, J. R. Kidd, first is a sllort talldelll repeat polylnorpl-lisln 
K. Cheuna, B. Bonne-Tamir, A. S. Santachiara-Benerecetti, ISTRP). This class of markers consists of 

P.  oral, M. Krings, S. Paabo, E. Watson, N. Risch, talldelnly repeated 13locks of t \ \~o  to  five 

T. Jenkins, K. K. Kidd nucleotiiies; STRPs often have multiple al- 
leles (defined hy the  numher of repeats) and 

Haplotypes consisting of alleles at a short tandem repeat polymorphism (STRP) and an 
Alu deletion polymorphism at the CD4 locus on chromosome 12 were analyzed in more 
than 1600 individuals sampled from 42 geographically dispersed populations (13 Af- 
rican, 2 Middle Eastern, 7 European, 9Asian, 3 Pacific, and 8Amerindian). Sub-Saharan 
African populations had more haplotypes and exhibited more variability in frequencies 
of haplotypes than the Northeast African or non-African populations. The Alu deletion 
was nearly always associated with a single STRP allele in non-African and Northeast 
African populations but was associated with a wide range of STRP alleles in the 
sub-Saharan African populations. This global pattern of haplotype variation and linkage 
disequilibrium suggests a common and recent African origin for all non-African human 
populations. 

Several lnodels for the  origin of Homo sa- 
piens sapiens have been proposed. T h e  "mul- 
tiregiollal origin"   nod el suggests that there 
was n o  single origin for all lnodern humans 
(1 ,  2 ) .  After the radiation of Homo erectus 
from Africa into Europe and Asia 800,000 
to 1.8 luillion years ago (3 ) ,  there was a 
continuous transition among regional pop- 
~llations from H .  erectus to H .  sabiens. Such 
"parallel evolution" among geographically 
dispersed populations could have been 
achieved by considerable amounts of gene 
flow between pop~~la t ions  (1 ,  2). By con- 
trast, the  "out of Africa" model suggests 
that all non-African human populations Je-  
scend from an  allatomicallv ~noderll  H .  sa- 
piens ancestor that evolved in Africa approx- 
imately 100,000 to 200,000 years ago and 
then spread and diversified throughout the 
rest of the Earth, supplanting any Homo 
populations still present outside of Africa (1 , 

4 ) .  Migration out of Africa may have oc- 
curred in a single or in multiple a.a17es (5). 

T h e  best-kno\vn genetic evidence used 
to support the  out of Africa hypothesis has 
come from studies of mitochondria1 LINA 
(mtLINA) in  which it \vas proposed that  
all lnodern ln tDNA can  he traced hack 
through the  maternal lineage to a single 
ancestor that  existed in  Africa between 
100,000 and 300,000 years ago (6 ,  7 ) .  T h e  
analysis and interpretation of these data 
have continued to  be &hated (8). Recent 
ln tDNA (9 )  and Y chrolnosolne (10)  stud- 
ies support the  original findings of a recent 
origin of all llloderll humans. W e  present 
data from the  nuclear autosomal genome 
tha t  strongly support the  out of Africa 
lnodel of human  origins and provide a 
ilifferent and independent estimate, based 
o n  linkage disequilil3rium, of the  recency 
of the  emigration from Africa. 

lnoderate to high mutation rates (14) .  
Manv researchers consider them uarticular- 
ly useful as markers for reconstructing re- 
cent evolutionary history (15).  T h e  S T R P  
at  the  CLI4 locus consists of the  pen- 
tanucleotiile sequence TTTTC repeated 
between 4 and 15 times (1 2 ,  13);  the  prod- 
ucts (including flanking sequence) of the  
polymerase chain reaction (PCR) range in 
size from 80 base pairs (hp) for a 4-repeat 
allele to 135 bp for a 15-repeat allele (16) .  
Most of the  12 alleles seen in humans are 
founii primarily in Africa. Outside of Africa 
ollly three alleles ( the  85.) 90-,  and 110-l3p 
alleles) ever occur at a freiluency greater 
than 10%. Genotype frequencies for all 
Ix~pulations are close to predicted Hardy- 
Weinberg expectations. W e  have also am- 
plified the C D 4  STRP in comlnon chim- 
panzee (71 = 22),  pygmy chimpanzee (n  = 

5) )  gorilla (n  = 5) ,  orangutan (n  = 3), and 
gibhon (11 = 4) .  Most hominoid species are 
polymorphic, hut alleles range only from 
three to  SIX repeats (75 to 90 bp) (17).  

T h e  second polymorphisln results from 
the  deletion of 256 hp of a 285-hp Alu 
element (Fig. 1 )  (13). This type of mutation 
is unlikely to have occurred more than 
once; D N A  sequence analysis of several Alu 
iieletion chromosomes from African and 
non-African individuals 11 8) revealed that , , 

all chromosomes contain the identical dele- 
tion, so that colnlnon ancestry can be as- 
sumed. T h e  Alu deletion allele [Alu(-)] 
was typed through use of published prilners 
and protocols (1 3) ;  it was found to be rare or 
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