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Monotherapy with (—)2’,3'-dideoxy-3'-thiacytidine (3TC) leads to the appearance of a
drug-resistant variant of human immunodeficiency virus-type 1 (HIV-1) with the methi-
onine-184 — valine (M184V) substitution in the reverse transcriptase (RT). Despite re-
sulting drug resistance, treatment for more than 48 weeks is associated with a lower
plasma viral burden than that at baseline. Studies to investigate this apparent contra-
diction revealed the following. (i) Titers of HIV-neutralizing antibodies remained stable in
3TC-treated individuals in contrast to rapid declines in those treated with azidothymidine
(AZT). (i) Unlike wild-type HIV, growth of M184V HIV in cell culture in the presence of d4T,
AZT, Nevirapine, Delavirdine, or Saquinavir did not select for variants displaying drug
resistance. (iii) There was an increase in fidelity of nucleotide insertion by the M184V

mutant compared with wild-type enzyme.

Hi1v infection is characterized by rapid
genetic variation resulting in diverse viral
populations in infected individuals (1). The
generation, over time, of HIV variants that
display resistance to drugs directed against
viral RT and protease is thought to account,
in part, for the ultimate failure of most
antiviral strategies (2). The rapid appear-
ance of such mutants is a combined result of
low-fidelity copying by RT (3, 4) and of the
selection pressure created by long-term an-
tiviral therapy in HIV-infected individuals.
Thus, an effective therapeutic agent might
be one that increases the fidelity of HIV RT,
thereby diminishing genetic diversification.

The M184V mutation is known to evoke
high-level resistance (up to 1000 times as
much) to 3TC as well as low-level resistance
(3 to 20 times as much) to both 2',3'-
dideoxyinosine (ddl) and 2',3'-dideoxycyti-
dine (ddC) as compared to the wild type
(5-7). In clinical studies, resistance to 3TC
was observed in nearly all patients who re-
ceived 3TC monotherapy for more than 12
weeks. The clinical performance of individ-
uals who received 3TC monotherapy has
been surprisingly good, considering the high
degree of drug resistance observed (8).
Moreover, the overall viral burden in these
patients remained below that at baseline,
despite the fact that almost all individuals
eventually displayed phenotypic resistance
against this compound and possessed the
M184V substitution (7).
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These observations suggested to us that
the emergence of viruses containing the
M184V substitution might have been ac-
companied by a sustained ability of the
immune system to suppress viral replication.
Median neutralization titers from nine
3TC-treated subjects who were studied over
a 48-week period were compared with nine
age- and CD4-matched patients who re-
ceived AZT. The decline in neutralization
titers was about seven times as fast in pa-
tients receiving AZT (half-life of neutral-

Fig. 1. Selection of resistance to AZT performed
with HIV, 5 (4), the HxB2 clone of infectious virus
(A), a drug-naive clinical isolate (O), a clinical iso-
late from a patient treated with 3TC for 4 months
(M184-clinical-A) (M), and the M184V recombi-
nant clone of HIV ({J). Details of selection proce-
dures were described previously (7). Measure-
ments of p24 antigen amounts were by the Abbott
antigen-capture assay as described (7). Results
are plotted as percentage of growth observed
with the AZT-resistant virus containing the M41L,
K70R, and T215Y (Met*' — Leu, Lys”® — Arg,
and Thr2'® — Tyr) substitutions. Note that, unlike
the molecular clone of M184V virus, the clinical

ization titer t;;, = 5.6 weeks) compared
with patients who received 3TC (t,;, = 40
weeks) (9—-11). These data suggested that
the M184V substitution may confer in-
creased fidelity to RT, thereby preventing
the emergence of HIVs with variant enve-
lope proteins; such variants have been
shown to escape neutralization by preexist-
ing antiviral antibodies (12) or cytotoxic T
lymphocytes (13).

To further assess the potential for genet-
ic variability among wild-type and M184V
HIV isolates, we used drug-selection proto-
cols (14) in which the emergence of drug-
resistant HIV variants was monitored over
time. The wild-type recombinant HxB2
clone of HIV, the HIVy,; isolate, and a
drug-sensitive clinical isolate could each
replicate in the presence of gradually in-
creasing concentrations of AZT, suggesting’
the appearance of resistant variants (Fig. 1).
In contrast, the replication of a recombi-
nant, infectious clone of HIV containing
the M184V substitution was inhibited by
AZT (15, 16). These results were also re-
produced with clinical isolates (M184V-
clinical-A and -B) that were shown, by
mutation-specific polymerase chain reac-
tion, to solely contain the M184V substitu-
tion. Replication of MI184V-clinical-A
(from an individual treated with 3TC) in
above-threshold concentrations of AZT
was undetectable until 4 to 5 weeks of
growth in culture, in contrast with much
higher levels of replication seen in 2 to 3
weeks, in the case of virus harvested from
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isolate containing the M184V substitution appeared to be outgrowing into a resistant viral population. This
may reflect the possibility that some residual M184 virus remained in the quasispecies after treatment with

3TC.

Table 1. Time to outgrowth (measured as the appearance of p24) of viruses in the presence of specific

drugs.

Time to outgrowth in presence of drug (days)

Virus tested

AZT d4T Nevirapine Delavirdine Saquinavir

HxB2 22 27 15 12 19
HIV, g 26 24 14 14 15
HxB2-M184V >180 >180 >180 >180 >180
M184V-clinical-A 110 97 85 92 135
M184-clinical-B 78 71 62 56 86
HxB2-K65R 24 22 18 14 16
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Table 2. The IC,,’'s of mutant viruses that were compared in the drug selection experiment (summarized
in Table 1), where IC, is the amount of a drug required to inhibit viral growth by 50%.

REPORTS

ICg,, for drug
Virus
AZT daTt Nevirapine Delavirdine
HxB2 0.002 0.03 0.3 0.006
HIV, g 0.002 0.04 0.2 0.004 -w
HxB2-M184V 0.001 0.03 0.3 0.008 - v e
M184V-clinical-A 0.003 0.05 0.5 0.005 070.5.0:7571 152 -3
M184V-clinical-B 0.001 0.04 0.4 0.004 TR ()
HxB2-K65R 0.001 0.02 0.6 0.002 Fig. 2. Autoradiogram showing the effect of dATP

drug-naive patients (Fig. 1). The time re-
quired for initial detection of apparent re-
sistance to AZT and other antivirals in
tissue culture is summarized (Table 1). For
both the drug-sensitive HIV,;5 isolate and
recombinant HxB2, periods of 2 to 3 weeks
(four to six passages) were usually sufficient
for initial indications of viral growth in the
presence of above-threshold concentrations
of AZT, d4T, Nevirapine, Delavirdine, or
Saquinavir. However, during 36 weeks of
growth under drug selection, little or no
resistance to any of the above compounds
was detected with recombinant M184V vi-
rus or with clinical isolates containing the
M184V substitution. In contrast, K65R
(Lys® — Arg) mutant virus, which is resist-
ant to ddC, could be selected for resistance
to these drugs (17). The diminished ability
to select drug-resistant variants with
M184V virus in cell culture virus-replica-
tion procedures is consistent with the hy-
pothesis that the M184V mutation confers
a greater polymerase fidelity on RT.

One must consider two other explana-
tions for a slowed, or a lack of, outgrowth of
drug-resistant variants from M184V virus.
The first is a possible decreased rate of

Table 3. The V.

max’

the K., and the efficiency of misinsertion (f,.;) for wild-type
(WT) and M184V RTs. Both V, , and K, are relative values. Standard devia-
tions presented are derived from two or three independent measurements;

replication of the M184V mutant. Growth
competition experiments to determine the
relative fitness showed that the M184V
virus is not significantly compromised in its
replicative capacity as compared to the wild
type (15). Thus, our results showing a lack
of virus outgrowth, until 180 days in the
presence of drugs (HxB2-M184V in Table
1), cannot be explained by a slight growth
disadvantage observed for the M184V virus.
Of course, one might expect that the genet-
ic background in which the M184V virus is
present, to some degree, could modulate the
time required for outgrowth of resistant vi-
ruses. In this context, the second clinical
isolate with the MI184V substitution
(M184V-clinical-B in Table 1) grew better
than the first in the presence of all of the
drugs tested. A second explanation could be
that the M184V substitution somehow con-
fers an increased sensitivity to each of the
drugs used in our experiments (Table 1).
M184V, in combination with the T215Y
mutation, is known to cause a reversal of
AZT resistance (5). However, viruses con-
taining only the M184V substitution did
not display heightened sensitivity to any of
the anti-RT drugs studied (Table 2). Addi-

asterisk. .

ins

(deoxyadenosine triphosphate) concentration on
the rate of misinsertion by the wild-type (A) and
M184V mutant (B) RTs. The reactions were run as
described in the text, and 6 pl of the reaction was
separated on a 16% polyacrylamide-urea gel. The
template-primer used was PBS-A (79).

tionally, it appears improbable that the
M184V substitution in RT would influence
the sensitivity of protease to Saquinavir.
Thus, failure to replicate in the presence of
these drugs is not attributable to diminished
capacity for replication, diminished fitness,
or increased sensitivity to the drugs used in
the selection procedure.

To directly address the effect of the
M184V alteration on polymerase fidelity,
we used a gel-based, steady-state kinetic
assay (I8) to compare the nucleotide mis-
insertion efficiencies of the wild-type and
the M184V variant RTs. A 5’ *?P-labeled
DNA primer with partial homology to the
cognate primer for HIV RT, transfer RNA
(tRNA)Y$3 was annealed to a DNA tem-
plate (45-nucleotide oligomer) representing
the sequence around the primer binding site
(PBS) of the HIV-1 genome (19, 20).
Standing-start polymerization reactions (21)
were carried out with purified HIV-1 wild-
type RT or M184V RT heterodimers (22)

values obtained from three independent measurements are indicated with an
was evaluated from ratios of relative V,,,, to K, as described in
(78). Base pairs are shown with the template first.

Base V. ax (%/min) K (M) Fins
par WT M184V WT M184V WT M184V
AT 3.90 = 1.00* 2.33 = 0.10* 3.20 + 0.55* 2.01 = 0.25* 1 1
AC 1.05 = 0.01 0.33 = 0.09* 811 + 57.20 850 + 370 1.05 x 1073 3.93 X 1074
AG 0.02 = 0.00 0.02 = 0.00* 151 = 31 260 + 70" 9.35 X 107° 6.79 X 1078
AA 1.10 £ 0.02 0.38 = 0.04 621 = 144 1210 = 290 1.52 x 10-3 277 X 1074
TA 5.20 + 0.05 1.32 = 0.04 0.77 = 0.11 0.99 = 0.11 1 1
TG 1.96 = 0.28 0.15 = 0.03* 490 = 70 280 = 60* 572 x 1074 3.98 X 10~*
TC 0.67 = 0.22 0.02 = 0.00 1080 = 220 560 = 210 8.71 X 107° 3.70 X 10-%
TT 0.63 = 0.08 0.06 = 0.01 420 * 80 2550 = 150 219 x 1074 1.73 X 10°5
GC 2.70 = 0.21 1.93 = 0.16 1.16 £ 0.26 111+ 0.3 1 1
GT 6.72 = 2.70 4.76 = 0.02* 165 * 45 © 570 = 150* 1.55 X 1072 473 x 1073
GA 0.94 = 0.09 0.20 = 0.04* 715 = 200 500 *+ 85* 5.62 x 10~4 2.18 x 1074
GG 0.24 = 0.05 0.36 * 0.06 350 + 60 1400 = 300 2.97 x 1074 1.41 X 1074
CG 3.41 £ 057 6.33 = 0.25 0.43 = 0.12 0.64 = 0.09 1 1
CA 0.68 = 0.09 0.17 = 0.03 330 = 30 540 = 10 254 x 1074 3.07 X 1075
CT 0.23 = 0.04* 0.08 = 0.01 510 = 110" 980 = 110 5.60 X 10-5 3.20 x 106
CCt ND ND ND ND ND ND
+The misinsertion of deoxycytosine triphosphate opposite template C was not detectable (ND) under the conditions used.
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in the presence of a single deoxynucleotide
triphosphate (ANTP) (23). A typical set of
reactions resulted in the increased accumu-
lation of extended primer as the dNTP
concentration was increased (Fig. 2). The
kinetic constants, K (Michaelis constant)
and relative V_ (maximum velocity) were
determined for each set of reactions from
the densitometric quantitations of unex-
tended and extended primers (23, 24) for
every possible insertion event, that is, 4
correct base pairs and 12 mispairs [primers
of variable lengths were used to measure
misinsertion opposite all four template
bases (19)]. The relative V __ and the K |
values from the 16 insertion events were
used to derive f; , the efficiency of misin-
sertion, as described (18, 24).

The rates of base substitution by HIV-1
RT vary and are influenced by the tem-
plate base, the dNTP, and the sequence
context (4, 25). As evident from the f,
values (Tables 3 and 4 and Fig. 3), the
M184V mutant displayed a greater fidelity
of insertion than did the wild-type HIV-1
RT. A higher fidelity was observed in the
formation of every mispair tested, with the
enhancement ranging from 2 to 17 times
as much for various mispairs. However,
decreases in the formation of certain mis-
pairs were greater than those for others
(for example, CA, TT, and CT pairs were
formed 8 to 17 times less efficiently than
the wild type) (Table 4). Our results indi-
cate that the range of misinsertions by the
wild-type RT was from 1.55 X 107% to 5.6
X 107°. The overall increase in fidelity
displayed by the M184V RT over that of
the wild type (determined by a comparison
of the average misinsertion efficiencies)
was by a factor of 3.2 and the range of
misinsertions by the M184V RT was from
4.73 X 1077 t0 3.2 X 107°.

The magnitude of the increase in fidelity
revealed by our studies of misinsertion could
be a minimal estimate of that in vivo. For

Table 4. Fold increases in the misinsertion fidelity
of M184V RT. The decreases in the efficiency of
misinsertions of the mutant RT over those of the
wild type were calculated from the data in Table 3.
ND, not determined.

Mispair Fold increases for M184V
AC 2.67
AG 1.37
AA 5.48
TG 1.44
TC 2.35
TT 12.65
GT 3.28
GA 2.58
GG 2.1
CA 8.27
CT 16.97
CC ND
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example, misextension, the extension of a
mispaired primer caused by misinsertion,
can help to “fix” a misinsertion (26). Simi-
larly, errors mediated by template or primer
slippage lead to base substitutions, deletions,
and insertions (27). The influence of
M184V alteration on either of these types of
errors is not known. Further investigations
that include experiments in a single infec-
tious cycle with reporter HIV constructs are
needed to address this issue. Considering the
fact that the rate of genetic variation in HIV
is at the threshold for survival, any slowing
of genetic variation is likely to influence
host-virus interactions (28).

It has been argued that the effect of
increased fidelity on viral evolution may
be irrelevant considering the high rates of
replication observed for HIV-1 (29, 30).
Although it is likely that a marginal in-
crease in fidelity might result in a short
time period during which the virus re-
mains at low titers, the emergence of other
mutations (alone or in combination with
M184V) could lead to higher increases in
fidelity and hence a greater window of
suppressed viral titers.

An additional benefit of a slower rate of
evolution of the HIV-1 quasispecies is the
effect on the ability of the immune system
to eliminate viruses that would be less pro-
ficient in generating immunological escape
mutants. A continued effectiveness of anti-
HIV immune responsiveness in treated in-
dividuals is suggested by the observed drops
in viral burden with high-level phenotypic
resistance to 3TC and the protracted capac-
ity of sera to neutralize viral isolates ob-
tained at multiple sequential times. If our
hypothesis of continued immune effective-
ness is correct, why did the viral burden not
continue to fall indefinitely in 3TC-treated
individuals? The answer may lie in the fact
that the high mutation rate of HIV-1 RT
(107*to 107°) leads to a high proportion of
defective virus particles (31). However, in
the case of a M184V RT with enhanced
fidelity, a much higher proportion of virus
replicative events would be expected to
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Fig. 3. Misinsertion efficiencies of wild-type (CJ)
and M184V (M) RTs. A comparative plot of misin-
sertion efficiencies (f,,¢) experimentally determined
for 11 of the 12 possible mispairs for wild-type and
M184V RTs (from Table 3) is shown.
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yield infectious progeny (32).

A variant RT with increased fidelity
may have implications for management of
HIV disease. The real value of 3TC may be
as a means of selecting for the M184V
substitution rather than as an antiviral
compound with the potential to impede
viral replication over long periods. Subse-
quent to the initiation of 3TC therapy, a
quantitative picture of the proportion of
M184V virus in the HIV quasispecies could
be obtained before administering a second
drug directed against a different viral com-
ponent such as protease. Thus, the virus
population would not only be sensitive to
the antiprotease drug but might be less like-
ly to develop resistance to it.

Note added in proof: Recent results with
misinsertion assays have revealed that an-
other dideoxynucleoside analog-resistant
RT, the E89G variant, polymerizes with an
increased ANTP insertion fidelity (37).
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Somatic Mutation of Immunoglobulin
V Genes in Vitro

Eva Kallberg, Sandra Jainandunsing, David Gray,
Tomas Leanderson*

The molecular mechanism behind affinity maturation is the introduction of point mutations

in immunoglobulin (Ig) V genes, followed by the selective proliferation of B cells expressing
mutants with increased affinity for antigen. Anin vitro culture system was developed in which

somatic hypermutation of Ig V genes was sustained in primed B cells. Cognate T cell help
and cross-linking of the surface Ig were required, whereas the addition of lipopolysaccha-

ride or a CD40 ligand to drive proliferation was insufficient. This system should facilitate

B cell selection.

understanding of the molecular and cellular mechanisms that regulate somatic mutation and

The process of somatic hypermutation of

Ig V genes within a population of prolifer-

ating memory B cell precursors provides a
pool of cells that are subject to selection for

increased affinity for antigen; this is the
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basis of affinity maturation of-antibody re-
sponses (1-4). Hypermutation and selec-
tion occur specifically within germinal cen-
ters in B cell follicles (5, 6), but the molec-
ular mechanism behind somatic mutation
has remained elusive, to a large extent be-
cause of the absence of well-defined in vitro
models (7). An in vitro model should also
facilitate analysis of the extra- and intracel-
lular signals regulating this mechanism and
of the regulation of the various fates of B
cells that participate in immune responses.
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