
phorylated in  anergic pGLlO cells and we 
detected n o  differences in expression of 
G A P  between normal and anergic cells (7). 

Although Inany aspects of T C R  signal 
trallsduction remain unaffected in anergic 

u 

T cells, we show clearly that a defect in Ras 
activation persists in these cells, and acti- 
vation of this pathway is known to be re- 
c l~~ired for IL-2 gene transcription (22).  W e  
postulate that an  early sigllali~lg defect re- 
sults in the  inability to activate the Ras 
pathlvay upon T cell stimulation. This block 
In Ras activation lnav result in a n  inability 
to engage the  transc;iption factors Fos and 
Jun, which drive transcription at AP-1 sites, 
thereby preventing IL-2 gene trallscription 
in anergic T cells. T h e  ability to regulate 
Ras activation in this way may he used bv , , 
the  imnlune system to  specifically prevent 
IL-2 production while allowing other T cell 
functions to nroceed. Determination of the  
precise target or targets in the  T C R  signal- 
ing cascade respo~lsihle for this block in Ras 
activation should provide inlportant insight 
into the  ~nechanisrns involved in the  mai11- 
tenance of T cell tolerance. 
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HLA-DM (DM) facilitates peptide loading of major histocompatibility complex class II 
molecules in human cell lines. Mice lacking functional H2-M, the mouse equivalent of DM, 
have normal amounts of class II molecules at the cell surface, but most of these are 
associated with invariant chain-derived CLIP peptides. These mice contain large num- 
bers of CD4+ T cells, which is indicative of positive selection in the thymus. Their CD4+ 
cells were unresponsive to self H2-M-deficient antigen-presenting cells (APCs) but were 
hyperreactive to wild-type APCs. H2-M-deficient APCs failed to elicit proliferative re- 
sponses from wild-type T cells. 

Experilnents in vitro suggest that DM fa- 
cilitates the  exchange of nlajor histocom- 
patibility colnplex ( M H C )  class II-associ- 
ated invariant chain peptides (CLIP) for 
antigenic peptides (1 ). T h e  general impor- 
tance of DM for peptide loading is debat- 
able, however, because mouse class I1 mol- 
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ecules have been reported to be less depen- 
dent o n  DM (2)  than hunlan class I1 mol- 
ecules (3) .  T o  evaluate the  function of 
H2-M in vlvo, we generated mice lacking 
H2-Mcy (Fig. 1,  A and B) (4). HZ-M a@ 
heterodimer forlnation is necessary for 
H2-M function, and in the absence of HZ- 
Ma H2-MB has a reduced half-life and does 
not  leave the  endoplaslnic reticulum (5, 6) .  

Splenocytes from HZ-M+/' (wild-type) 
and H 2 - M p /  (HZ-M-deficient) nlice were 
analyzed for HZ-M expression with the  use 
of indirect illllllu~lofluorescence (7). In  HZ- 
M+/+ mice, H2-M stainlng was located in 
vesicular structures (Fig. l C ) ,  as described 
previously (6 ) ,  whereas no  HZ-M staining 
was detected in cells from H Z - M - /  mice 
(Fig. ID) .  Costaining with H2-A" mono- 
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clonal antibody (mAb) M5/114 showed no 
distinct staining differences between the 
two cell types (compare Fig. 1, C and D, 
green). The absence of normal HZ-M pro- 
tein in the mutant mice was confirmed by 
two-dimensional gel electrophoresis of im- 
munoprecipitated HZ-M from metabolically 
labeled splenocytes (8). Whereas precipi- 
tates from wild-type cells contained both 
HZ-M, and HZ-Mp, no HZ-M protein was 
detected in the precipitates from the HZ- 
M-/- cells (Fig. 1E). 

To determine the effect of HZ-M on the 
cell surface expression of MHC class I1 mol- 
ecules, we incubated lymph node cells from 
wild-type and HZ-M-/- mice with a panel 
of HZ-Ah-reactive mAbs and analyzed 
them by flow cytometry (fluorescence-acti- 
vated cell sorting, or FACS) (9). Several of 
the mAbs (M5/114 in Fig. 2A and Y3P and 
AF6-120.1, not shown) stained wild-type 
and mutant cells with equal intensity, 
which indicates that the cell surface 
amounts of HZ-Ah were comparable in the 
two types of cells. In contrast to the effects 
of these mAbs, differential staining was ob- 
served with two other HZ-Ah mAbs: BP107 
did not stain mutant cells at all, whereas 
KH74 stained mutant cells with reduced 
intensity (Fig. ZA). These findings suggest 
that the HZ-Ah conformation on the HZ- 
M-/- cells might be different from that of 
the wild-type control cells. 

In view of the well-documented findings 
implicating DM in the removal of CLIP 
from class I1 molecules ( I ) ,  the reduced 
binding of some HZ-Ah mAbs to HZ-M-I- 
cells could reflect a failure to exchange 
CLIP for other peptides. To examine this 
possibility, we stained mutant cells with 
mAb 30-2, which reacts with CLIP-associ- 
ated HZ-Ah (10). In contrast to its weak 
reactivity with wild-type cells, mAb 30-2 
strongly stained HZ-M-/- cells (Fig. ZA). 
Moreover, pre-incubation with mAb 30-2 
completely blocked the reactivity of HZ-Ah 
mAb KH74 with mutant cells, although the 
same treatment had no effect on KH74 
staining of HZ-M+/+ control cells (Fig. 
ZA). Thus, virtually all class I1 molecules 
appeared to contain CLIP. 

Immunohistochemical analysis of tissue 
sections from HZ-M-I- mice confirmed the 
FACS analysis findings (1 1 ). Thus, HZ-M 
expression in the lymphoid tissues of mu- 
tant mice was undetectable, whereas in 
wild-type mice HZ-M expression was ob- 
served in B cells, macrophages, and dendrit- 
ic cells in the spleen and lymph nodes. In 
normal thymus, HZ-M was expressed in cor- 
tical epithelial cells and in the medulla but 
was completely undetectable in the HZ- 
M-/- thymus (Fig. ZB). Class I1 expression 
in the thymuses of mutant mice was com- 
parable to that in the wild-type controls 
when analyzed with mAb M5/114, whereas 

no staining was observed with mAb BP107 
in the mutant thymuses (Fig. ZB). Similar 
to the class I1 molecules in lymph node B 
cells, the class I1 molecules in the HZ-M-/- 
thymuses appeared to contain mainly CLIP, 
because both epithelial cells and bone mar- 
row-derived APCs stained strongly with 
mAb 30-2. In contrast, this antibody stained 
only a few scattered cells in the medullas of 
the wild-type thymuses (Fig. ZB). 

Under mildly denaturing conditions, 
class I1 molecules containing well-fitting 
peptides often migrate as dimers in SDS- 
polyacrylamide gel electrophoresis (SDS- 
PAGE) gels (1 2), whereas class I1 molecules 
with poorly fitting peptides dissociate and 
migrate as single a and p chains. The SDS 
stability of HZ-Ah molecules from wild-type 
or mutant mice was analyzed in a pulse 
chase experiment (8). After immunopre- 
cipitation with M5/114, samples were ana- 
lyzed by SDS-PAGE without boiling, thus 
leaving stable class I1 dimers intact. In 

A - 
A H H A  S 1Y 

I 
I 

splenocytes from HZ-M+/+ mice, SDS-sta- 
ble dimers ( ap )  were formed within 1 hour 
of incubation (chase) and were still promi- 
nent after 24 hours of chase (Fig. ZC). Only 
small amounts of SDS-unstable class I1 
monomers were seen. Surprisingly, the HZ- 
Ah molecules precipitated from HZ-M-/- 
splenocytes also migrated as SDS-stable 
dimers, though their migration was slightly 
slower than the migration of dimers derived 
from wild-type cells (Fig. ZC, ap*). Some 
class I1 monomers were also seen, and a low 
molecular weight band representing CLIP 
was prominent. HZ-M-I--derived HZ-Ah 
molecules appeared compact rather than 
floppy in nature (13), migrating as distinct 
bands in contrast to the diffuse dimer band 
seen in the wild-type precipitate. 

These results suggest that a limited num- 
ber of peptides, most likely CLIP peptides, 
were responsible for the dimer bands. SDS- 
stable DR1-CLIP complexes have been re- 
ported (14), and because CLIP binds strong- 

Fig. 1. Diswptb of the mollse H2-Ma gene. (A) 
Map showing the orgsnhation of the H2-M9 gene 
before (top) and aftw mom) homdogws re- 
mbLzation with the targeting construct (middle). 
A neomycin resistance gene (neo) was inserted 
into exon 2 of the HZ-Ma p, and a herpes 
simplex-thymidine kinase gene (HSV-tk) was 
pieced 3' of the H2-Me ~ W W  (4). sites 
are Apa I (A3, Hind Ill 0, Not i M, Stu I (S), and 53 
I (Sf). Numbered d i d  boxes are exons. The h a -  
tion of the probe used in Southem hybridization is 
shown.(B)GenomicSouthemanalysisofApa 
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Cdigwxed tea DNA from W-type (+/+), het- 
erozygous (+/-), and homazygaw (-/-) mica 

"P 
for t h e m 4  HZ-Ma gene. The DNA size is 2.8 
k b f r w n t h s ~ ~ a n d l . 8 k b f r o m t h e  
disrupted allele. (C and D) Confocal images of 
H2-M+'+ (C) HZ-M-'- (D) ~plenocytes dwble- 
stained with K553 (anti-H2-M) (red, rigM) (6) and 
W 1 1 4  ( a n t i - A b )  (green. left) (21). K553 stain- 
ing was present in vesicular structures in (C), but 

0 

absentin@).M5/114stainingwaslocatedbothat 
the cell surface and intracellu~ in both cases. (E) Immunopreclpctabon 

. .  . from mS-labe(ed spleen cells (8). 
HZ-M+'+ (top) or HZ-M-'- (bottom) r,pbmqtes were labeled for 3 hows. H2-M was imrmropredpi- 
tated from the ceH lysates with mAb 2E5A and adyzed by two-dimensionai gel electrophoresis. Abbre 
viatims are as follows: a, d i n ;  a, H2-M,; and k, H2-M,. Rddic proteins are located to the rigM. 



ly to HZ-Ah (15), formation of SDS-stable 
dimers is possible, though unexpected. The 
intensity of the class I1 bands did not signif- 
icantly decrease during the 24-hour chase 
period, indicating that the half-life of HZ-Ah 
in the mutant mice is similar to its half-life 
in wild-type mice. In boiled (and reduced) 
samples (Fig. 2D), the class I1 molecules 
migrated as monomers, and the only distinct 
difference between the wild-type and mutant 
precipitates was the large amount of CLIP 
present in the mutant sample (1 6). 

We next determined whether CLIP-asso- 
ciated class I1 molecules were able to medi- 
ate normal selection of CD4+ T cells. The 
proportion of lymph node (and splenic; not 
shown in figure) CD4+ cells (Fig. 3A) was 
reduced in H2-M-I- mice to approximately 
30 to 50% of that in normal mice. This 
reduction in CD4+ cells was also seen in the 
mutant thymuses, though to a lesser extent. 
Nonetheless, the lymphoid tissues appeared 
normal, and the finding that large numbers 
of CD4+ cells did develop indicates that 
positive selection by means of HZ-Ab mol- 
ecules did occur in the H2-M-I- mice. The 
phenotype of the CD4+ cells generated in 
these mice was similar to that from H2- 
M+/+ mice. Thus, most of the extrathymic 
CD4+ cells displayed a nayve phenotype 
(Fig. 3B), and analysis of Vp usage suggested 
that the cells were polyclonal (17). 

To determine whether the H2-M-I- 

CD4+ cells were functional, we analyzed 
their ability to proliferate in response to 
alloantigens. CD4+ cells from the mutant 
mice failed to respond to their own splenic 
APCs, which is consistent with normal self- 
tolerance induction. In contrast, these cells 
reacted strongly to APCs from MHC- 
matched wild-type littermates (and to those 
from normal C57BL/6 mice). This hyperre- 
activity was apparent as early as day 2 in 
culture and was maximal by days 3 to 4. 
Titration of responder CD4+ cells indicated 
that the H2-M-I- cells were 10- to 100-fold 
more responsive to HZ-Ah than were CD4+ 
cells from normal wild-type mice. An abnor- 
mally strong proliferative response was also 
seen after exposure of HZ-M-I- CD4+ cells 
to APCs from a variety of MHC allogeneic 
strains, including B1O.DZ (HZ-Ad), B1O.BR 
(H2-Ak), and B6.bm12 (H2-Ah"'*). Not 
surprisingly, in view of the limited peptide 
repertoire of the HZ-M-I- class I1 mole- 
cules, the APCs from H2-M-/- mice failed 
to stimulate MHC allogeneic T cells (Fig. 
4B). The inability to elicit proliferative T 
cell responses did not reflect poor costimu- 
lation because HZ-M-I- APCs could pro- 
vide normal costimulation for CD4+ cell 
responses to CD3 antibody as well as to 
concanavalin A. Furthermore, HZ-M-I- 
APCs were not nonspecifically suppressive 
because the addition of these cells to cul- 
tures with normal APCs did not significant- 

ly alter their ability to initiate a response. 
These findings are consistent with the 

notion that a limited peptide repertoire 
(mainly consisting of CLIP) can support 
positive selection of large numbers of func- 
tional CD4+ T cells. Nonetheless, the re- 
duced number of CD4+ cells in these mu- 
tant mice also suggests that a normal den- 
sity of class I1 molecules on thymic epithe- 
lial cells is not sufficient to achieve 
maximal levels of positive selection and 
that peptide diversity contributes to the 
efficiency of this process. It is also not clear 
how diverse the selected T cell repertoire is, 
though the strong reactivity to both synge- 
neic and allogeneic APCs suggests that 
there is considerable diversity. 

The HZ-M-I- mice do not display overt 
autoimmunity, which indicates that their 
tolerance to CLIP-associated class I1 mole- 
cules is normal. The hyperreactivity of H2- 
M-I- CD4+ cells to H2-Ah APCs from 
normal mice suggests, however, that the 
diversity of the class 11-associated peptides 
is too limited in HZ-M-I- mice to induce 
negative selection to self peptides other 
than CLIP. The three-dimensional struc- 
ture of HLA-DR3-CLIP (18) suggests that 
class II-CLIP complexes may not be quali- 
tatively different from other class 11-peptide 
complexes. Therefore, the failure of alloge- 
neic CD4+ T cells to respond to H2-M-I- 
APCs is unlikely to reflect a conformational 
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change in the class I1 molecules that would 
abolish T cell receptor billding. T h e  lack of 
response is more likel\- a reflection of the  
fact that most class I1 molecules o n  H2- 
M-I- APCs contam CLIP. Desplte the 
hlgh densit\; of this complex o n  the  H2- 
M p i  APCs, the  precursor frequent\- of T 
cells able to recognize a single class I1 pep- 

A .  Lymph node & Thymus 

Fig. 3. Analyss of T cell markers In H 2 - M  - and 
H2-M '  ' mlce (A) Lymph node cells or thymo- 
cytes were stalned wlth antlbodles reactve w th  
CD4 and CD8 and analyzed by flow cytometry. (B) 
Analysls of lymph node CD4+ T cells for actlvaton 
markers wlth the use of CD45RB (left) and L-se- 
lectn (rght) ndcated a nalve phenotype (27). 

C Stimulators 
8 B 

200 

Stimulators 

HZ-M+ n 150 

Fig. 4. CD4' T cell function and antigen-present- 
n g  capaclty (28) (A) Reactivity of CD4+ T cells 
from H2-M- I -  (left) or H2-M'/+ (rlght) mice to 
APCs from different mouse strans. (B) Abillty of 
H2-M- / -  and H2-M+'+ APCs to stimulate aloge- 
nec CD4+ T cells Responses were analyzed after 
3. 4, and 5 days of culture. 

HZ-MI/+ 
H Day 3 

D a y 4  

tide coruplex ( that  IS, allogellelc MHC- 
CLIP) 1s presulnably low and the reactiwt\~ 
of these cells undetectable in assays of pro- 
liferative response. T h e  data presented here 
sho~v  that H2-M is esse~ltial for ge~leratillg a 
l lor~ual repertoire of 0 4 -  T cells as well as 
for the  presentation of a normal array of 
peptide antigens. 
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