
recri~)n \\.a> the rcbult of tlie rure11- (>dL1 
lighr-piilarir ,~t~m qv~ll~llctrv ot  the 110r111a1 
stare in thls ilirectioll t i ~ r  r h e ~ r  yalllyle. As 
\ve reporteLl earlier (211), and c0nfirme~1 ill 
this s t ~ ~ d y .  O L I ~  normal .tare for overidoped 
, a m ~ i l e  1s o t  m~xei l  symmetry. Chr  ohserl-a-- 
t l ~ > n  of ,I non:ero sap along the r-X ilirec- 
r1i111 t;lr overdoped samyle  rllu5 seem.; an 
int r in~ic  effccr ,itrrll>ural-le to ido11in.r. 

A - 

Sel~eral important conclucioni re111 '{I- 
recr11- trom our ilara. Reca~1.e the gap along 
the r-X iilrectlon 1s ni>il:criI tor the over- 
L1L713eil ,<3lll~lle., ~ ~ 1 ~ 1 1  salllplc> callll~>r pL>ssess 
a pure d,:-.: superci)nil~~crlngg nri1cr-13arame- 
tcr > y ~ ~ l m e t r ~ ~ .  Ho\vc\.cr. the optimal11- ~lopeii 
,111ii unJcrilope~1 sample5 eshil3ir a ~ ~ e r v  small 
yap in tl1e r - X  illrectlon, <mall c i ~ a u ~ h  to be 
co11~1srcnr \v~rh  pure i i ,~- , .  SI-mmetrv. 

F'e consi,Iere~l .e\.eral lii..;,sll3le mL~;lcls 111 

ligllt ~t L)US i ~ ~ r k ~ .  -rhe C X ~ C I I ~ ~ ~ ~ I  . s - \ \ - ~ ~ \ ~ C  111~~~1~1 
propo\eid 1.1- L'arma :111ri ci3-workers ( 15) 111111- 
cares t11,lt the g,rp ~ l o ~ l e >  \I-oulJ appear ar 
d~ftercnt firillouin :one liicat~c)ns da  the slrc of 
t11c FC~IIII i~irflilce changes. \Y'e ob,ervei! 110 

icll , in~~ ~n the Fern11 \vn\-e \.ector in the T-X 
illrectlon hetlvecn rhc r\\.o types a t  >,inlplec, 
~nillcat~ng that r h ~ s  part i>i rlle Fernli surf~ce 
J~il not ,ippreci,il~l~ change li, six. Given that 
the ch,rn:rc !11 Ferml sushce mlghr lye sll~allcr 
than i>ur esperlmental unccrt,~int~-. ha\\ ever, 
\ye can neither rule out nor espllclt11- wpporr 
an extended i-\\;ai,e moilel. 

Our  preient data are con.;istrnt \\;it11 a11 
aniaotroplc s-\\-a~-c i~rdcr  [parameter. Ho\\-e~,- 
er, the gap mucr beco~lle mc7re a~licotropii 
tor unL1cr~loycii >ample\; this e s p c r ~ m e n t ~ ~ l  
rehult \\:ill ii)n>tr:un s ~ ~ c h  rhec.rctica1 mi>Ldels. 
T h e  ilata are c~lsi> c~)nsistenr ~ v i t h  a t\vo- 
component order p,lramerer (1 i ,  \\.it11 the 
relarlvc 11 e~qllr. o t  the t\vo cinnponents 
cl-iangmg a i t h  ~roich~onlerrv (3-5). Such 
~llocdclj (-7-5) yreLllct that the gLi13 l l l ~ ~ l i ~ l l a  
( ~ l r  11~)idei) c11~1~e 10c~iti011 the rel;rri\-e 
\velghr ilt the t \v~)  ciimponent~ c h a n ~ s .  
TIXI-e 1.; the poss~h~lity thCit the ~-ic>cier ~n tllc 
gay fi~nctlon h i t t  \ \ - ~ t h  eloping (1 3 .  14).  
Because 11-e measurcil i-he gap c)nl\- along the 
h~gh-s\-mmerr~- L l ~ r c c t l a ~ ~ \ .  \vc c,in neither 
conflrnl nor excluJe this po i s~b i l i r~ .  

In ,ummary, x1.e have reproilucihlv and 
re!-eriblv i l h , ~ n ~ e ~ l  the .uperc~~ncluct l~~g yak1 
:1111<~>rropv fri>m - 70 : 1 to -7 : 1 by chang- 
irlg tile ilsygeil doping. T h e  ilata d i s t ~ n @ ~ ~ i s h  
I s i>~ne tllei\retlcal 1110~1elh c ~ ~ ~ c l  con-  
strain other moclels. Our  data p r u ~ - ~ i l e  a 
01~1tiol1 6)s the apparent contli i t  hetlveen 
earlier p h o t n e m ~ > s ~ o n  rep>rts ,I.; to \vherher 
there is a :ere in h e  sa13 along the T-X 
t j ~ r e c t ~ o n  in the B r ~ l l o ~ i i l ~  r011e. 
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Model Estimaaions Biesd by Truncated Expansions: 
Possi bBe Artifacts i w Seismic Tomography 

Jeannst Trampert" ancl Woe1 Snieder 

In most linear imaging problems, where the model to be sought is expanded in a set of 
basis functions. it is common practice to truncate the set at a certain (arbitrary) level. The 
solution then depends on the chosen pa.rameterization, and neglected basis functions 
may leak into the solution to produce artifacts in the retrieved model. An unbiased estimate 
of the coefficients of the true model may be obtained in the chosen finite basis set; here, 
a method to suppress leakage is illustrated on an example of global seismic tomography. 

A 11near Inverse r ro l~ lem is c ie t~ne~l  as one 
In \ \ . l l~ch the idara are llnear fiulcrlon,il. a t  
the moilel. Spcclflc,ill\-, ~i d a t ~ ~ m .  L l . ,  1s re- 
l ~ t c d  to the ~ ~ n k n o \ \ m  model i ~ l ( r i  hv 

where C;,ir) represents the knii\\.n data ker- 
nels ;ierl\.ed from theor\-. There are many 
\\-a!-.; o t  inkrriny models from ilat ,~ 11  , 2 ) .  
R'c ha\-e rcsrr~~t i ' i i  L I L I ~  idi<c'ussl~in liere to 
the con\.ellicllr cake \\-here the ~lloilel to IY 
scought 1s cspanJe~1 in a cc)mplete 52t of 
basis f ~ ~ n c t ~ i > n a  B, iuch that 

,Such an ,lpproach applie. to a large cl,i.;s iit 
~n te rpo la r i c )~~ ,  ipcctral ;inaly.;i;, and imaginy 
~ r c ~ l ~ l e m s  in ;i:-tri>nomr., geopl~va~c\.  :mil 
meclicine. Llany ilitferent parametcri:atii,17s 
(choices nt lxsii  f~ inc t i i~ns )  are pohsllyle, hut 
a. long as the chi>,en het is complete, the\- 
are all eq~~iva len t .  T o  ilescril-e the ~noiiel  
h l l \ - ,  the set ot hasi. tunctions muat he 

1 has ro he c;rrrleid i > ~ ~ t  to ~nf lnl ty .  T l l ~ s  
\\.o~ilid lead to an ill-ri~scd Inverse problem. 
In yraitice, \ve are limiteil by the filllte 
resi~lution o t  the il:~ta, so that \ve h :~ve  to 
choose 211 upper limit, L. for the expansion. 
T h i j  leaiis to a classical llnear inverse prol3- 
lcnl for L ioefficienr,, c,, \\.hich m:1y be 

\\;here the marrls A is iletineJ b ~ -  .A,, = 
JG,(r)B,(r!dr. T h e  t r ,~ncar i [~n of the expan- 
sion leaids ro a ~moothei i  estimar~on of the 
true nloiiel, reirarilless ot  the real inlooth- 
ne.;, propestles c ) t '  the  true model. Genes,ll- 
lv, 11-c 1121-e no prcci.e a ~ I - L O I - L  kno~vleilge of 
the unl<no\vn t'uncrion ~ n i r ) ,  and OLIS chnlce 
o t  L 15 g ~ ~ i d c i l  1.v rccll~llcal iq~iestions, juch 
a the s i x  ot the  inverse t~roblcm. Anv real 
htruilture ~unrepresenteil by the finite num- 
ber o t  I?asi< fnnctionj fixed 1iy L may pro- 
iluce 3 171<1s 111 0111. e b t ~ ~ n , ~ t e  of the li>\\.-c>rilei- 
e x p a n s ~ i n ~  of the true moilel. 

U'e \\.ill sh[>n. here that  leaI:.ige 111dy 
occur from neirlected l~aais func t~ons  to 
the  f i l l~ te  n ~ ~ m b e r  o t  est~matecl coetflcient< 
anil that  inhi>mogeneoua nlodel ?ampling 
1s r q ~ o n ~ i l - l e  t;>r this bias 13, 4 ) .  W e  are 
t11~1s confl-~~nted ivith the ~unde>iralile prop- 

-- . . 
J T . a ~ p e t  Fccle et ~cse-.!atc~i.e de p i )s~c- le  ZLI erty that the model depe~lds on the nay it is 
%be. LRA 1355 LLP-CNRS, 5 R.,e Reie Cescaices, sampleii. \xic here a matllel,latical -- c; 084 S t ~ - s s b ~ ~ . r c  Cedex, France 
R,  Snlee:er, DeJarmert cf T7eei.etlcal ueel,l,,sics, 7 l  

f i ~ r n l u l ~ t ~ i ) ~ ~  rlli1t takes the coillplete LIII- 

,.ei.slty 31 ~ t rec i - t ,  P C. Box 5:.021, 35:8 TA ~t rec i - t ,  l;no\\.n moLlel structure into accoLunt anil 
Nethera ic :~  s~~p[ireases leakage \\.it11 the use of a nreighted 

TC ,:lei- c3 re;jcic:a-ce sic.l~ci ce ac:c:lessec: least-sil~~area algorithm. T h e  n.e~ghting ma- 



trix depends explicitly on the degree of trun- 
cation of the basis that has been chosen to 
parameterize the model. Using a global, sur- 
face-wave tomography problem, we will il- 
lustrate the effects of leakage and to what 
degree it can be suppressed. 

A general least-squares solution (1) of 
Eq. 3 is obtained by minimizing the cost 
function 

where the subscript L designates the trun- 
cation level of the set of basis functions and 
the superscript * denotes the matrix trans- 
pose. The operators C:' and define 
norm weightings in data and model space, 
respectively, and the least-squares estima- 
tion of the first L model coefficients is given 
by 

cLS = (AfCalAL+ C,;;)-'AfC,'d (5) 

Equation 3 can be decomposed into d = dL 
+ d, = A,c, + &c,,where the subscript 
m designates the neglected basis functions. 
This then in turn yields 

The last term in Eq. 6 is responsible for 
the leakage, and it is readily shown that the 
basis functions are in general not orthogo- 
nal with respect to the product defined by 
A;CiJ;A, (3). For a homogeneously sam- 
pled model, however, the inner product 
defining the orthogonality of the basis func- 
tions appears naturally, and the last term is 
close to zero (4). In the case of inhomoge- 
neous sampling, d, has a nonzero projection 
onto the space spanned by the first L basis 
functions, and leakage occurs. This leakage 
occurs because of an incomplete basis and 
inhomogeneous sampling, which are unfor- 
tunately common in inference problems. 
Leakage, however, can be suppressed if one 
is able to invert only that part of the data, 
d,, represented by L chosen basis functions. 

This can in fact be done by minimizing 
the cost function 

Fig. 1. Rayleigh wave cov- 
erage for 1989 used in this 
study. Blue rays indicate 
minor arc paths and or- 
ange lines indicate major 
arc paths. I 

S,,,, = (d - ALcL - Ax~,)*Cdl(d - ALCL 

which is obtained from Eq. 4 by replacing cL 
with c, + c,, with the implicit condition 
that c, and c, are uncorrelated. Solving Eq. 
7 gives rise to a system of two coupled linear 
equations in C, and c,, which may be solved 
for C, only, unbiased by the presence of c,. 
This procedure of partitioning the model or 
the data before inversion has been used in 
the past, and a general discussion of such 
techniques may be found elsewhere (5). 

Minimizing St,, gives a new estimation 
for c,: 

CY = (AfWAL + C,;;)-'AfWd (8) 

with W = (A,C,,,A: + Cd)-'. The anti- 
leakage operator, W, appears as a weighting 
in the data space and undoes the effects of 
inhomogeneous sampling. Eqs. 5 and 8 have 
the same structure, and both results are 
maximum likelihood solutions given their 
respective norm weightings C:' or W. The 
difference in their solutions will be the fit to 
the data. Solutions to Eq. 8 will generally 
show a worse fit because only part of the 
data (d,) have been inverted, but these 
solutions will be unbiased by d,. Though 
the anti-leakage operator allows a priori 
errors and correlations to be incorporated 
into model and data space, the leakage re- 
duction depends on these chosen norm 
weightings. 

Most often one considers the case where 
Cd = ujI, CE,, = u:,I, and C,,, = uf-I, 
with I being the identity matrix. These 
values in turn reduce Eq. 8 to 

CY = [AfWIAL + (cx~/P~) I ] - 'A~W'~  

(9) 
with W' = (A,AL + P21)-', where a2 = 
u;/u:, and P2 = u;/u:,. The problem de- 
pends then on two constants; eigenvalue 
analysis gives insight into the importance of 
the chosen values for a2 and p2 to optimize 
leakage reduction (6). A crucial problem is 
the calculation of A-A:. Using the orthog- 
onality between the different spaces in- 
volved, simple algebra leads to A , x  = r 
- A,A;, where rij = JGi(r)Gj(r)dr is the 

Gram matrix of the problem (2). The 
truncation level, L, appears explicitly in 
this expression. It is beyond the scope of 
this report to discuss the existence of r 
(not all inverse problems allow the evalu- 
ation of the Gram matrix) or the numer- 
ical problems involved in calculating an 
inverse matrix with the dimension of the 
data space. Another way of dealing with 
the leakage problem has been adopted by 
Backus (7) by holding hard prior bounds 
on the model. He showed that the finite 
number of basis functions, L, may be cho- 
sen so that all omitted basis functions, 
which satisfy the bound, cannot produce 
signals in the data that lie above the level 
of measurement error. In his terminology, 
we are suppressing leakage by using soft 
prior bounds. 

Seismic tomography (8-11) is con- 
cerned with inferring the structure of the 
Earth (such as velocity or density) from 
data (such as arrival times or wave forms), 
and the frequently used linearized relation 
between the two is of the form of Ea. 1. The 
Earth model to be sought may be parame- 
terized in many ways (such as spherical 
harmonics or cells) (8-10). Without any 
loss of generality, we will restrict the fol- 
lowing discussion to a model parameteriza- 
tion in terms of spherical harmonics. 

To illustrate the effects of leakage and of 
the anti-leakage operator, we simulated a 
seismic tomography experiment based on 
surface waves. We used a station-event dis- 
tribution based on the global seismicity 
from 1989 together with the available glob- 
al seismic stations (Fig. 1). We first com- 
puted synthetic data for a hypothetical 
Earth structure of spherical harmonic de- 
gree 10 and order 5 only (Fig. 2A). After 
adding 10% random noise, we inverted 
these data up to degree and order 8. Al- 
though the given ray coverage seems dense, 
significant spectral leakage (12) was 
present; the pure degree 10 structure leaves 
after inversion a significant imprint on the 
spherical harmonic coefficients up to de- 
gree and order 8 (Fig. 2B). The inversion 
based on Eq. 9 reduced the effects of leakage 
almost completely (Fig. 2C). 

Next, we took the same ray geometry and 
computed synthetic data with 10% random 
noise for a hypothetical Earth structure of 
degree 5 and order 3 (Fig. 3A), which again 
we inverted up to degree and order 8. Results 
from Eqs. 5 and 9 were identical (Fig. 3, B 
and C), which indicates that the anti-leak- 
age operator does not affect the lower de- 
grees. This is different from a regularization 
approach. It would be possible to regularize 
the problem in such a way that leakage is 
suppressed, but that would also affect the 
lower demees. There would then be a trade- - 
off between leakage reduction and resolu- 
tion. The anti-leakage operator keeps per- 
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fect resolution for the lower degrees. " 
Many three-dimensional seismic mod- 

els have been develo~ed so far. A recent 
comparison of global tomographic models 
(11) shows that although the degree of 
correlation is encouraging, many discrep- 
ancies remain. None of the global tomo- 
graphic models has the ability to resolve 
small structures (that is, these models are 
predominantly long wavelength models); 
only recently have some researchers sug- 
gested that important, small-scale struc- 
ture might have been omitted in these 
long wavelength models (13) or, worse, 
that such omissions might be responsible 
for a certain amount of bias (3). Wi,th the 
accumulationm of digital seismograms in 
worldwide data centers and the possibility 
to treat all available information automat- 
ically (14), it seems clear that the power 
spectrum of Earth's structure is whiter 
than has previously been assumed. 

With the above theory, it has become 
possible to analyze the effects of leakage on 
existing global three-dimensional seismic 
models. We took a Rayleigh wave phase 
velocity model (14) for a period of 80 s 
ex~ressed in terms of s~herical harmonics 
up to degree and order 20 and computed 

synthetic data for the ray geometry depicted 
in Fig. 1. We added 10% random noise to 
the data and inverted it with a classical 
least-squares algorithm (Eq. 5), assuming 
the real Earth has onlv an as~herical struc- 
ture up to degree and orde; 12 and thus 
neglecting a considerable amount of power. 
The inferred model (Fig. 4B) deviates from 
the true model (Fig. 4A) in amplitude and 
geographical position. The main differences 
occurred in the signature of the mid-Atlan- 
tic ridge and in a pronounced low-velocity 
feature in southern Africa that is clearly not 
present in the initial model. The magnitude 
of these differences was of the same order as 
the discrepancies described in (I I). The 
model inferred with the anti-leakage oper- 
ator of Eq. 9 (Fig. 4C) is almost indistin- 
guishable from the true model. " 

These results suggest that the small-scale 
structure omitted in existing three-dimen- 
sional Earth models may be responsible for 
some differences on current tomographic 
models. The bias toward long wavelengths 
that occurs in these models by neglecting 
small-scale structure is reminiscent of 
"aliasing" (15). But leakage and aliasing are 
quite different. Aliasing occurs when the 
structure is undersampled (evenly or un- 

evenly) by the data. Once the undersam- 
pling has occurred, nothing can be done to 
correct for aliasing. Leakage occurs because 
the basis functions are not orthogonal with 
respect to the matrix products involved in 

Fig. 5. The estimated model (degrees 0 through 
12) is a filtered version of the true model ldearees 
0 ihrough 20). The square defined by d&&s 0 
through 12 by 0 through 12 is the classical reso- 
lution matrix, which is close to unity because of the 
a priori information. The rectangle defined by de- 
grees 0 through 12 by 13 through 20 describes 
the bias. The lower the degree, the less it is biased 
by the neglected basis functions; the higher the 
neglected degree, the less it leaks. 

Fig. 2 (left). Synthetic experiment: lnversion of a pure degree 10 structure (A) 
with a classical least-squares algorithm (B) and anti-leakage algorithm (C) up 
to degree and order 8. The scale is relative to unit input. Fig. 3 (center). 
Synthetic experiment: lnversion of a pure degree 5 structure (A) with a clas- 
sical least-squares algorithm (B) and anti-leakage algorithm (C) up to degree 
and order 8. The scale is relative to unit input. Fig. 4 (right). Realistic 
experiment: A Rayleigh wave phase velocity model (14) at a period of 80 s was 

P 

r *, - 
1 00 -5 00 5 00 

used to calculate synthetic data up to degree and order 20. (A) The true 
degree 12 reference model. The data were then inverted with a classical 
least-squares algorithm (B) and anti-leakage algorithm (C) up to degree and 
order 12. All phase velocity perturbations are in percent and relative to PREM 
(18). The main differences occur at the mid-Atlantic ridge and in southem 
Africa. The neglected power of degrees 13 through 20 present in the data is 
responsible for the bias. 
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the inverse problem, in the case of uneven 
sampling only. Aliasing takes place only 
from small-scale signals to long wavelength 
signals, whereas leakage mav occur both - L2 

ways. For instance, in the determination of 
magnetic anomaly maps, it is common to 
expand the anomaly field into spherical 
harmonic degrees 15 through 60 (16) .  
Without anv precautions, there is a possi- , A 

hility of leakage froin low-frequency basis 
functions (below degree 15) as well as from 
high-frequency basis f~lnctions (above de- 
gree 60). 

Another, more general, way of looking 
at the effects of leakage is by considering 
Eq. 6. The  first term of the right-hand side 
defines the classical resolution ooerator. 
The  additional term on the right-hand side 
defines the bias introduced by leakage, and 
its interpretation is similar to that of the 
resolution operator. It is clear from its ex- 
pression that the bias operator depends on 
only the sainpling geometry by means of the 
data kernels and the a priori information 
(or norm weightines). We calculated the - L~ , 

bias operator for the tomography problem 
discussed above for spherical harmonic de- 
grees 13 through 20. Figure 5 shows the bias 
operator together with the resolution oper- 
ator for each degree. Deeree 12 (the highest 

L2 

degree of the expansion) is most biased by 
degree 13 (the first neglected degree), and 
the spectral leakage is strongest for the 
spherical harmonic components close to 
the truncation level. Whereas the weight- 
ed least-squares model is almost identical 
to the true model, the classical least- 
sauares model denarts more and more from 
the true model with each higher degree. 
V(Iit11 a different approach, Hulot et al. (1 7) 
reached a similar conclusion and found that 
only the lowest degrees of core motiolls 
could be retrieved satisFactorily from geo- 
magnetic data. 

The far-reaching conclusio~ls of seismic 
tomography in terms of geodynamic con- 
straints on the driving forces of mantle 
convection, petrological models, and min- 
eral physics call for the highest possible 
precision of the three-dimensional structure 
of the Earth's interior. The formulation of 
most seismic tomography problems intro- 
duces a bias by leaking basis f~~nc t ions  into 
the solution (Figs. 4 and 5). .%ccounting for 
such leakage might change our three-di- 
mensional image of the Earth. 
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Radiation-Induced Diamond Formation in 
Uranium-Rich Carbonaceous Materials 

Tyrone L. Daulton* and Minoru Ozima 

Nanometer-sized diamonds were identified by transmission electron microscopy in a 
uranium-rich, coal-like carbonaceous assemblage of Precambrian age. This observation, 
together with estimates of formation efficiencies, supports the hypothesis that diamond 
can form in carbonaceous material irradiated by the radioactive decay products of ura- 
nium. The results also suggest that the formation of carbonados cannot be sufficiently 
explained by a radiation mechanism alone. 

Dubinchuk et al. (1)  first reported submi- 
crometer-sized diamonds in uranium-bear- 
ing sedimentary rocks with a high carbon 
content (for example, kerogens, lignite, 
coal, and kerite) that had never been sub- 
jected to high temperatures or pressures; 
they speculated that diamond was formed 
when carbonaceous material was irradiated 
by the spontaneous fission products of ura- 
nium. Karninsky ( 2 )  extended this idea and 
proposed that carbonados were also formed 
by this mechanism. Carbonados are poly- 
crystalline porous aggregates of fine-grained 
diamonds foulld only in placer deposits and 
are characterized by many crustal features, 
including mineral inclusions of crustal as- 
semblages, tightly trapped atmospheric no- 
ble gases, and a lack of association with 
kimberlites or lamproites. These features 
strongly suggest that the diamonds did not 
form by high static pressure in Earth's man- 
tle. One possible mechanism of formation is 
shock metamorphism resulting from the im- 
pact of extraterrestrial bodies (3). Carbona- 

T. L. Daulton Department of Physics and McDonneli 
Center for the Space Sciences Washington University, 
St. LOLIIS. MO 63130. USA. 
M. Oz~ma, Department of Earth and Planetary Sciences, 
Washington Unlverslty St, Louis, MO 63130 USA, and 
Depariment of Earth and Planetary Physlcs Unversity of 
Tokyo. Butikyo-Ku Tokyo 11 3. Japan. 

'To vihom correspondence should be addressed. 
Present address: Materials Sclence Dlvlsion, Argonne 
National Laboratory Argonne. IL 60439, USA. 

dos containing the shock-associated dia- 
mond polymorph lonsdaleite have been 
found in meteorite craters (4). However, 
not all carbonados contain lonsdaleite or 
are associated with established irnnact struc- 
tures. A considerable amount of parentless 
fission Xe and Kr has been identified in 
Braziliall and African carbonados (5). The 
presence of such large amounts of fissiogenic 
Xe and Kr is possible olllv if the carbona- 
ceous precursots to dialnolid (as well as the 
diamond itself) were originally part of a 
finely dispersed L-rich material over geolog- 
ical time scales, consistent with the hypoth- 
esis of Kaminskv (2). Hoxever, the identi- 
fication of micrometer-sized grains as dia- 
mond by Di~hinchuk et a/. ( 1 )  is tenuous, 
because the determination was based on  
electron microdiffraction patterns that 
vielded unit-cell oaraineters silnilar to those 
of diamond. No stereographic al~alysis of the 
diffraction patterns or chemical analysis of 
the grains was reported. 

T o  evaluate the feasibility of a radiation- 
induced diamond forination mechanism, 
Fisenko e t  al. (6)  studied carburanium, a 
U-rich (-5% uranium oxides by weight), 
fine-grained, coal-like assemblage contain- 
ing hydrous, ainorphous carbonaceous ma- 
terial (-65% by weight) of Precambrian 
age (1.7 -t 0.2 billion years) from North 
Karelia, Russia (7). The carbonaceous 
grains in carburanium have received high 
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