rection was the result of the purely odd
light-polarization symmetry of the normal
state in this direction for their samples. As
we reported earlier (20), and confirmed in
this study, our normal state for overdoped
samples is of mixed symmetry. Our observa-
tion of a nonzero gap along the I'-X direc-
tion for overdoped samples thus seems an
intrinsic effect attributable to doping.

Several important conclusions stem di-
rectly from our data. Because the gap along
the I'-X direction is nonzero for the over-
doped samples, such samples cannot possess
a pure d:___» superconducting order-parame-
ter symmetry. However, the optimally doped
and underdoped samples exhibit a very small
gap in the I'-X direction, small enough to be
consistent with pure d:_ : symmetry.

We considered several possible models in
light of our data. The extended s-wave model
proposed by Varma and co-workers (15) indi-
cates that the gap nodes would appear at
different Brillouin zone locations as the size of
the Fermi surface changes. We observed no
change in the Fermi wave vector in the I'-X
direction between the two types of samples,
indicating that this part of the Fermi surface
did not appreciably change its size. Given that
the change in Fermi surface might be smaller
than our experimental uncertainty, however,
we can neither rule out nor explicitly support
an extended s-wave model.

Our present data are consistent with an
anisotropic s-wave order parameter. Howev-
er, the gap must become more anisotropic
for underdoped samples; this experimental
result will constrain such theoretical models.
The data are also consistent with a two-
component order parameter (2), with the
relative weights of the two components
changing with stoichiometry (3-5). Such
models (3-5) predict that the gap minima
(or nodes) change location as the relative
weight of the two components changes.
There is the possibility that the nodes in the
gap function shift with doping (13, 14).
Because we measured the gap only along the
high-symmetry directions, we can neither
confirm nor exclude this possibility.

In summary, we have reproducibly and
reversibly changed the superconducting gap
anisotropy from ~20:1 to ~2:1 by chang-
ing the oxygen doping. The data distinguish
among some theoretical models and con-
strain other models. Our data provide a
solution for the apparent conflict between
carlier photoemission reports as to whether
there is a zero in the gap along the I'-X
direction in the Brillouin zone.
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Model Estimations Biased by Truncated Expansions:
Possible Artifacts in Seismic Tomography

Jeannot Trampert® and Roel Snieder

In most linear imaging problems, where the model to be sought is expanded in a set of
basis functions, it is common practice to truncate the set at a certain (arbitrary) level. The
solution then depends on the chosen parameterization, and neglected basis functions
may leak into the solution to produce artifacts in the retrieved model. An unbiased estimate
of the coefficients of the true model may be obtained in the chosen finite basis set; here,
amethod to suppress leakage is illustrated on an example of global seismic tomography.

A linear inverse problem is defined as one
in which the data are linear functionals of
the model. Specifically, a datum, d;, is re-
lated to the unknown model m(r) by

d; = G(r)m(r)dr (1)

where G,(r) represents the known data ker-
nels derived from theory. There are many
ways of inferring models from data (I, 2).
We have restricted our discussion here to
the convenient case where the model to be
sought is expanded in a complete set of
basis functions B; such that

m(r) = zg,Bj(r) (2)

j=1

Such an approach applies to a large class of
interpolation, spectral analysis, and imaging
problems in astronomy, geophysics, and
medicine. Many different parameterizations
(choices of basis functions) are possible, but
as long as the chosen set is complete, they
are all equivalent. To describe the model
fully, the set of basis functions must be
complete, and hence the summation in Eq.
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2 has to be carried out to infinity. This
would lead to an ill-posed inverse problem.
In practice, we are limited by the finite
resolution of the data, so that we have to
choose an upper limit, L, for the expansion.
This leads to a classical linear inverse prob-
lem for L coefficients, ¢ which may be
represented by the matrix equation

d = Ac (3)

where the matrix A is defined by A, =
fG,(r)Bi(r)dr. The truncation of the expan-
sion leads to a smoothed estimation of the
true model, regardless of the real smooth-
ness properties of the true model. General-
ly, we have no precise a priori knowledge of
the unknown function m(r), and our choice
of L is guided by technical questions, such
as the size of the inverse problem. Any real
structure unrepresented by the finite num-
ber of basis functions fixed by L may pro-
duce a bias in our estimate of the low-order
expansion of the true model.

We will show here that lealkage may
occur from neglected basis functions to
the finite number of estimated coefficients
and that inhomogeneous model sampling
is responsible for this bias (3, 4). We are
thus confronted with the undesirable prop-
erty that the model depends on the way it is
sampled. We present here a mathematical
formulation that takes the complete un-
known model structure into account and
suppresses leakage with the use of a weighted
least-squares algorithm. The weighting ma-
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trix depends explicitly on the degree of trun-
cation of the basis that has been chosen to
parameterize the model. Using a global, sur-
face-wave tomography problem, we will il-
lustrate the effects of leakage and to what
degree it can be suppressed.

A general least-squares solution (1) of
Eq. 3 is obtained by minimizing the cost
function

St =(d— Ac))*Cy'(d — Arcy)
+ ¢ Cller (4)

where the subscript L designates the trun-
cation level of the set of basis functions and
the superscript * denotes the matrix trans-
pose. The operators C;! and C_} define
norm weightings in data and model space,
respectively, and the least-squares estima-
tion of the first L model coefficients is given

by
S = (A[C7'A+ C)T'ACrd (5)

Equation 3 can be decomposed intod = d;
+d, = Ajc; + A_c,,where the subscript
o designates the neglected basis functions.
This then in turn yields

oS = (A[C'AL + CTHT'AICT'Ae,
+ (AJC7'AL+ C)'A[C ' Avc.. (6)

The last term in Eq. 6 is responsible for
the leakage, and it is readily shown that the
basis functions are in general not orthogo-
nal with respect to the product defined by
AJC;'A. (3). For a homogeneously sam-
pled model, however, the inner product
defining the orthogonality of the basis func-
tions appears naturally, and the last term is
close to zero (4). In the case of inhomoge-
neous sampling, d_. has a nonzero projection
onto the space spanned by the first L basis
functions, and leakage occurs. This leakage
occurs because of an incomplete basis and
inhomogeneous sampling, which are unfor-
tunately common in inference problems.
Leakage, however, can be suppressed if one
is able to invert only that part of the data,
d,, represented by L chosen basis functions.

This can in fact be done by minimizing
the cost function

Fig. 1. Rayleigh wave cov-
erage for 1989 used in this
study. Blue rays indicate
minor arc paths and or-
ange lines indicate major
arc paths.
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Sm( = (d - ALCL - Axcoc)*cd_l(d - ALCL
- A.c) + ¢;Clie, + ¢, *C e (7)

which is obtained from Eq. 4 by replacing ¢,
with ¢; + ¢, with the implicit condition
that ¢; and c,, are uncorrelated. Solving Eq.
7 gives rise to a system of two coupled linear
equations in ¢; and c., which may be solved
for ¢; only, unbiased by the presence of c.,.
This procedure of partitioning the model or
the data before inversion has been used in
the past, and a general discussion of such
techniques may be found elsewhere (5).

Minimizing S, gives a new estimation
for ¢;:

CXV = (AzWA,_ + C;,_l)_lAZWd (8)
with W = (A.C. A% + C,;)7!. The anti-

leakage operator, W, appears as a weighting
in the data space and undoes the effects of
inhomogeneous sampling. Egs. 5 and 8 have
the same structure, and both results are
maximum likelihood solutions given their
respective norm weightings C; ! or W. The
difference in their solutions will be the fit to
the data. Solutions to Eq. 8 will generally
show a worse fit because only part of the
data (d;) have been inverted, but these
solutions will be unbiased by d... Though
the anti-leakage operator allows a priori
errors and correlations to be incorporated
into model and data space, the leakage re-
duction depends on these chosen norm
weightings.

Most often one considers the case where
C;=03,C; =all and C. = ol
with I being the identity matrix. These
values in turn reduce Eq. 8 to

Y =[AW'AL + (P/BHI]'A;W'd

9
with W' = (A_A> + BZ)~!, where a? =
a3/o? and B? = o?/o’,. The problem de-
pends then on two constants; eigenvalue
analysis gives insight into the importance of
the chosen values for o and B? to optimize
leakage reduction (6). A crucial problem is
the calculation of A.Ax. Using the orthog-
onality between the different spaces in-
volved, simple algebra leads to A_ AL =T
— A A], where T, = [G(r)Gj(r)dr is the

=
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Gram matrix of the problem (2). The
truncation level, L, appears explicitly in
this expression. It is beyond the scope of
this report to discuss the existence of T’
(not all inverse problems allow the evalu-
ation of the Gram matrix) or the numer-
ical problems involved in calculating an
inverse matrix with the dimension of the
data space. Another way of dealing with
the leakage problem has been adopted by
Backus (7) by holding hard prior bounds
on the model. He showed that the finite
number of basis functions, L, may be cho-
sen so that all omitted basis functions,
which satisfy the bound, cannot produce
signals in the data that lie above the level
of measurement error. In his terminology,
we are suppressing leakage by using soft
prior bounds.

Seismic tomography (8-11) is con-
cerned with inferring the structure of the
Earth (such as velocity or density) from
data (such as arrival times or wave forms),
and the frequently used linearized relation
between the two is of the form of Eq. 1. The
Earth model to be sought may be parame-
terized in many ways (such as spherical
harmonics or cells) (8—10). Without any
loss of generality, we will restrict the fol-
lowing discussion to a model parameteriza-
tion in terms of spherical harmonics.

To illustrate the effects of leakage and of
the anti-leakage operator, we simulated a
seismic tomography experiment based on
surface waves. We used a station-event dis-
tribution based on the global seismicity
from 1989 together with the available glob-
al seismic stations (Fig. 1). We first com-
puted synthetic data for a hypothetical
Earth structure of spherical harmonic de-
gree 10 and order 5 only (Fig. 2A). After
adding 10% random noise, we inverted
these data up to degree and order 8. Al-
though the given ray coverage seems dense,
significant spectral leakage (12) was
present; the pure degree 10 structure leaves
after inversion a significant imprint on the
spherical harmonic coefficients up to de-
gree and order 8 (Fig. 2B). The inversion
based on Eq. 9 reduced the effects of leakage
almost completely (Fig. 2C).

Next, we took the same ray geometry and
computed synthetic data with 10% random
noise for a hypothetical Earth structure of
degree 5 and order 3 (Fig. 3A), which again
we inverted up to degree and order 8. Results
from Egs. 5 and 9 were identical (Fig. 3, B
and C), which indicates that the anti-leak-
age operator does not affect the lower de-
grees. This is different from a regularization
approach. It would be possible to regularize
the problem in such a way that leakage is
suppressed, but that would also affect the
lower degrees. There would then be a trade-
off between leakage reduction and resolu-
tion. The anti-leakage operator keeps per-
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fect resolution for the lower degrees.

Many three-dimensional seismic mod-
els have been developed so far. A recent
comparison of global tomographic models
(11) shows that although the degree of
correlation is encouraging, many discrep-
ancies remain. None of the global tomo-
graphic models has the ability to resolve
small structures (that is, these models are
predominantly long wavelength models);
only recently have some researchers sug-
gested that important, small-scale struc-
ture might have been omitted in these
long wavelength models (13) or, worse,
that such omissions might be responsible
for a certain amount of bias (3). With the
accumulation - of digital seismograms in
worldwide data centers and the possibility
to treat all available information automat-
ically (14), it seems clear that the power
spectrum of Earth’s structure is whiter
than has previously been assumed.

With the above theory, it has become
possible to analyze the effects of leakage on
existing global three-dimensional seismic
models. We took a Rayleigh wave phase
velocity model (14) for a period of 80 s
expressed in terms of spherical harmonics
up to degree and order 20 and computed

-1.00 1.00

synthetic data for the ray geometry depicted
in Fig. 1. We added 10% random noise to
the data and inverted it with a classical
least-squares algorithm (Eq. 5), assuming
the real Earth has only an aspherical struc-
ture up to degree and order 12 and thus
neglecting a considerable amount of power.
The inferred model (Fig. 4B) deviates from
the true model (Fig. 4A) in amplitude and
geographical position. The main differences
occurred in the signature of the mid-Atlan-
tic ridge and in a pronounced low-velocity
feature in southern Africa that is clearly not
present in the initial model. The magnitude
of these differences was of the same order as
the discrepancies described in (11). The
model inferred with the anti-leakage oper-
ator of Eq. 9 (Fig. 4C) is almost indistin-
guishable from the true model.

These results suggest that the small-scale
structure omitted in existing three-dimen-
sional Earth models may be responsible for
some differences on current tomographic
models. The bias toward long wavelengths
that occurs in these models by neglecting
small-scale structure is reminiscent of
“aliasing” (15). But leakage and aliasing are
quite different. Aliasing occurs when the
structure is undersampled (evenly or un-

=1.00 1.00

evenly) by the data. Once the undersam-
pling has occurred, nothing can be done to
correct for aliasing. Leakage occurs because
the basis functions are not orthogonal with
respect to the matrix products involved in

Fig. 5. The estimated model (degrees O through
12) is a filtered version of the true model (degrees
0 through 20). The square defined by degrees 0
through 12 by 0 through 12 is the classical reso-
lution matrix, which is close to unity because of the
a priori information. The rectangle defined by de-
grees 0 through 12 by 13 through 20 describes
the bias. The lower the degree, the less it is biased
by the neglected basis functions; the higher the
neglected degree, the less it leaks.

A

Fig. 2 (left). Synthetic experiment: Inversion of a pure degree 10 structure (A)
with a classical least-squares algorithm (B) and anti-leakage algorithm (C) up
to degree and order 8. The scale is relative to unit input. Fig. 3 (center).
Synthetic experiment: Inversion of a pure degree 5 structure (A) with a clas-
sical least-squares algorithm (B) and anti-leakage algorithm (C) up to degree
and order 8. The scale is relative to unit input. Fig. 4 (right). Realistic
experiment: A Rayleigh wave phase velocity model (74) at a period of 80 s was
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used to calculate synthetic data up to degree and order 20. (A) The true
degree 12 reference model. The data were then inverted with a classical
least-squares algorithm (B) and anti-leakage algorithm (C) up to degree and
order 12. All phase velocity perturbations are in percent and relative to PREM
(78). The main differences occur at the mid-Atlantic ridge and in southern
Africa. The neglected power of degrees 13 through 20 present in the data is
responsible for the bias.
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the inverse problem, in the case of uneven
sampling only. Aliasing takes place only
from small-scale signals to long wavelength
signals, whereas leakage may occur both
ways. For instance, in the determination of
magnetic anomaly maps, it is common to
expand the anomaly field into spherical
harmonic degrees 15 through 60 (16).
Without any precautions, there is a possi-
bility of leakage from low-frequency basis
functions (below degree 15) as well as from
high-frequency basis functions (above de-
gree 60).

Another, more general, way of looking
at the effects of leakage is by considering
Eq. 6. The first term of the right-hand side
defines the classical resolution operator.
The additional term on the right-hand side
defines the bias introduced by leakage, and
its interpretation is similar to that of the
resolution operator. It is clear from its ex-
pression that the bias operator depends on
only the sampling geometry by means of the
data kernels and the a priori information
(or norm weightings). We calculated the
bias operator for the tomography problem
discussed above for spherical harmonic de-
grees 13 through 20. Figure 5 shows the bias
operator together with the resolution oper-
ator for each degree. Degree 12 (the highest
degree of the expansion) is most biased by
degree 13 (the first neglected degree), and
the spectral leakage is strongest for the
spherical harmonic components close to
the truncation level. Whereas the weight-
ed least-squares model is almost identical
to the true model, the classical least-
squares model departs more and more from
the true model with each higher degree.
With a different approach, Hulot et al. (17)
reached a similar conclusion and found that
only the lowest degrees of core motions
could be retrieved satisfactorily from geo-
magnetic data.

The far-reaching conclusions of seismic
tomography in terms of geodynamic con-
straints on the driving forces of mantle
convection, petrological models, and min-
eral physics call for the highest possible
precision of the three-dimensional structure
of the Earth’s interior. The formulation of
most seismic tomography problems intro-
duces a bias by leaking basis functions into
the solution (Figs. 4 and 5). Accounting for
such leakage might change our three-di-
mensional image of the Earth.
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Radiation-Induced Diamond Formation in
Uranium-Rich Carbonaceous Materials

Tyrone L. Daulton* and Minoru Ozima

Nanometer-sized diamonds were identified by transmission electron microscopy in a
uranium-rich, coal-like carbonaceous assemblage of Precambrian age. This observation,
together with estimates of formation efficiencies, supports the hypothesis that diamond
can form in carbonaceous material irradiated by the radioactive decay products of ura-
nium. The results also suggest that the formation of carbonados cannot be sufficiently

explained by a radiation mechanism alone.

Dubinchuk et dl. (1) first reported submi-
crometer-sized diamonds in uranium-bear-
ing sedimentary rocks with a high carbon
content (for example, kerogens, lignite,
coal, and kerite) that had never been sub-
jected to high temperatures or pressures;
they speculated that diamond was formed
when carbonaceous material was irradiated
by the spontaneous fission products of ura-
nium. Kaminsky (2) extended this idea and
proposed that carbonados were also formed
by this mechanism. Carbonados are poly-
crystalline porous aggregates of fine-grained
diamonds found only in placer deposits and
are characterized by many crustal features,
including mineral inclusions of crustal as-
semblages, tightly trapped atmospheric no-
ble gases, and a lack of association with
kimberlites or lamproites. These features
strongly suggest that the diamonds did not
form by high static pressure in Earth’s man-
tle. One possible mechanism of formation is
shock metamorphism resulting from the im-
pact of extraterrestrial bodies (3). Carbona-

T. L. Daulton, Department of Physics and McDonnell
Center for the Space Sciences, Washington University,
St. Louis, MO 63130, USA.

M. Ozima, Department of Earth and Planetary Sciences,
Washington University, St. Louis, MO 63130, USA, and
Department of Earth and Planetary Physics, University of
Tokyo, Bunkyo-Ku, Tokyo 113, Japan.

*To whom correspondence should be addressed.
Present address: Materials Science Division, Argonne
National Laboratory, Argonne, IL 60439, USA.

SCIENCE -«

VOL. 271 ¢ 1 MARCH 1996

dos containing the shock-associated dia-
mond polymorph lonsdaleite have been
found in meteorite craters (4). However,
not all carbonados contain lonsdaleite or
are associated with established impact struc-
tures. A considerable amount of parentless
fission Xe and Kr has been identified in
Brazilian and African carbonados (5). The
presence of such large amounts of fissiogenic
Xe and Kr is possible only if the carbona-
ceous precursors to diamond (as well as the
diamond itself) were originally part of a
finely dispersed U-rich material over geolog-
ical time scales, consistent with the hypoth-
esis of Kaminsky (2). However, the identi-
fication of micrometer-sized grains as dia-
mond by Dubinchuk et al. (I) is tenuous,
because the determination was based on
electron microdiffraction patterns that
yielded unit-cell parameters similar to those
of diamond. No stereographic analysis of the
diffraction patterns or chemical analysis of
the grains was reported.

To evaluate the feasibility of a radiation-
induced diamond formation mechanism,
Fisenko et al. (6) studied carburanium, a
U-rich (~5% uranium oxides by weight),
fine-grained, coal-like assemblage contain-
ing hydrous, amorphous carbonaceous ma-
terial (~65% by weight) of Precambrian
age (1.7 = 0.2 billion years) from North
Karelia, Russia (7). The carbonaceous
grains in carburanium have received high





