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ITECHNICAL COMMENTS 

How Much Solar Radiation Do Clouds Absorb? 

Anomalous absorption of solar radiation by 
clouds is said to exist (1,2) because short­
wave absorption inferred from solar flux 
measurements often exceeds theoretical 
prediction. R. D. Cess et at (3) suggest that 
solar absorption in clouds is not only signif­
icantly larger than the model prediction, 
but also much larger than inferred by pre­
vious measurements, including those that 
originally suggested the anomaly. 

Current understanding predicts that ab­
sorption of solar radiation by the entire 
atmospheric column containing clouds is 
only slightly enhanced over absorption by 
an equivalent clear sky column. Theory 
predicts that cloud absorption can exceed 
20% of incoming radiation (4) and that this 
absorption occurs in place of rather than in 
addition to clear sky absorption. Significant 
absorption by cloud thus does not imply 
anomalous absorption, and the data collect­
ed in an aircraft in the study by Pilewskie 
and Valero (5, 6), when averaged, is actu­
ally consistent with current understanding. 
Thus, neither report (3, 5) indicates that 
cloud absorption (as opposed to the total 
column absorption) is actually enhanced. 

Measurement of atmospheric absorption 
is difficult to make, as it requires measure­
ment of all radiation flowing into and from 
a volume. In measurements made from air­

craft (3, 5), the volume is ill-defined, and 
measurement of fluxes on its boundaries is 
by necessity limited to just a few locations. 
The usual approach is to measure the fluxes 
at the cloud top and base along the flight 
line of the aircraft and to make assumptions 
about the representativeness of these mea­
surements to the unsampled regions. Given 
these assumptions, absorption then results 
as a (usually small) residual of the differenc­
es in these fluxes. When error analyses of 
this approach is considered, the combina­
tion of undersampling of boundary fluxes 
and the natural variability of the real atmo­
sphere is too great to produce credible re­
sults (2, 7). This variability results in spu­
riously large positive and negative excur-
sions-to-absorption calculated as a flux dif­
ference (8). Where the study by Cess et at. 
(3) differs from others is that the above-
cloud flux data derive from satellite obser­
vations, whereas the surface measurements 
are obtained from either a single radiometer 
or a network of 11 radiometers. This anal­
ysis is supposed to account for large space 
and time scale variability and is supposed to 
accommodate undersampled boundary flux­
es. The report (3) does not contain an error 
analysis and or evidence to support this 
assumption. 

Cess et al. introduce an approach to the 
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analyses of these flux data [figure 1 in (3)] 
which expresses the fluxes at cloud top 
(represented as an albedo along the y axes) 
as a function of downward fluxes below 
cloud (expressed here as a transmittance 
along the x axis) (9). The  slope P, they 
argue, is governed by absorption, and esti- 
mate its value to be -0.59, which is signif- 
icantly different from a slope deduced by 
state-of-the-art radiative transfer models 
(10). Although the slopes characterizing 
the model results vary according to where 
clouds occur in the atmosnhere lor more 
precisely, how much water vapor exists 
above clouds (4)1, the relationshi~s shown . . -.  
are similar to the model results quoted by 
Cess et al. (3).  The purpose of the model 
results shown is not to highlight differences 
in the slope parameter p (as in Fig. I ) ,  but 
to emphasize the implications for spectral 
albedo of the results of Cess et al. (as in Fig. 
2). If their analvses are assumed to be cor- 
rect, then it is unclear why our present 
understanding is so badly flawed and why 
other measurements are wrong. 

The  cloud absorption anomaly as posed 
by Cess et al. contradicts results from other 
data sets. Absorption of solar radiation in 
the troposphere including in clouds occurs 
largely In the near infrared (NIR) portion of 
the spectrum (4) (at wavelength h longer 
than about 0.7 pm) .  If it is supposed that 
the enhancement occurs in the NIR region " 

( I  I ) ,  then it is simple to estimate the mag- 
nitude of the chanee in NIR albedo (unlike - 
absorption, reflection is a quantity that is 
measurable) that is required to produce the 
value p found by C95. This change (Fig. 
2A) is a function of transmission and indi- 
cates that a reduction of radiation of 50 to 
60% is needed to account for a value of P 
eaual to -0.59 (cloud absor~t ion in this 
case is more than doubled). Existing mea- 
surements of NIR albedo, a fundamentallv 
more accurate measure than any residual 
estimates of absorption (2), do not support 
this kind of anomaly (Fig. 2B). 

The reflection of NIR radiation from 
clouds is detected over a narrow band of 

Transmission 
Fig. 1. Compar~son of the albedo-transmission 
relation derived from state-of-the-art radiation 
models for high (---) and low (-0.) clouds contrast- 
ed to the relation shown in the report by Cess et a/.  
(3). p = 0.59 (-). Units on the x and y axes are 
arbitrary. 

wavelengths where absorption is small (but 
not negligible), that is, where the change in 
albedo (and ahsorption) must be greatest 
(in so-called windows) (Fig. 3, y axis). A 
corresponding reflection at visible wave- 
lengths is where absorption is thought to be 
nonexistent (Fig. 3, x axis). The relation 
between these reflections depends on parti- 
cle size (through particle size effects on 
absorption) and cloud optical thickness-a 
dependence successfully used to remotely 
sense cloud particle size (1 2). A 50% reduc- 
tion of nir reflection leads to a change in 
the estimated particle size from 10 pm,  
typical of the droplet size if marine water 
clouds to 50 pm. This is consistent neither 
with the demonstrated capabilities of 

present cloud particle size retrievals nor 
with known micronhvsics of such clouds. 

& ,  

Without convincing error analyses, 
without a renroduction of the results using 

u 

different analyses and different data, and 
without an explanation of why other pub- 
lished results are inconsistent with their 
own, then it is difficult to evaluate the 
findings of Cess et al. (3).  The  nonrepro- 
duc~ble nature of their results (3)  is suggest- 
ed in the results of Nemesure et al. 11 3 )  who . , 

analyze the same Boulder tower data and 
arrive at a different conclusion about the 
effect of clouds on the shortwave forcing. 
The  analyses of Pilewskie and Valero [see 
figures 6 and 7 in (5)] also conflicts with 
their own "direct" measurements of absorp- 

- Fig. 2. (A) Change in NIR albedo required to bring 
$ o,8: A the results of Fig. 1 into agreement with those of 

i a 0,6i -.-.---- --...... Cess eta/, (B) Ratio of the NIR-to-visible albedo as 
.-.. --.. .-. m ! 0- -..-...... ...... .... a function of transmission. This ratio vanes from 

a :  *... -...-. 0.8 to 1.1 according to theory for transmiss~ons 
Z 0.4; 
C ; .- ... . less than 0.5. Direct measurements of this ratio 

'~ ',, & 0.2: ~, ~. obtained over low and high clouds are also 
C 1 ~, 
m 1 

~, .~. ,, 
shown. High (---) and low (-*-) clouds and P = 

r 
0 0:  0.59 (-) per Cess et a/. (3) are shown. Data iden- 

0 011 0:2-013 0:4 0:5 016 0:; 0:8 tified as low cloud are from measurements report- 
Transmission ed by Hignett (12). Cirrus 

. B 
- clouds measurements de- 

____----- ---- _ scribed by Smith et a/. (13). 
1.1- -- , Cirrus cloud Units on the x and y axes are 

\\,,/measured 
1 .O - arbitrary. 

0,3 0.2 0.0 ~ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Transmission 

r =  1 
0.1 ~ ' ~ ~ . ~ l ' l , ' ~ L  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Reflection function (0.75 pm) 

Fig. 3. NIR reflectance at 

stratocumulus cloud from a 
2-D radiative transfer model 
at a given solar-viewing ge- 
ometry. 

0.7 
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tion [figure 1 in (5)]. These results suggest 
that there are problems (7) with the indi­
rect slope method used by Cess et al (3). 
For example, the slope results in figure 6 in 
the report by Pilewskie and Valero (5) pre­
dicts that a cloud of 45% albedo absorbs in 
excess of 40% of the incident solar radia­
tion, a result unsupported in their figure 1. 
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Response: Stephens reflects a traditional 
viewpoint in stating that cloud "absorption 
occurs in place of rather than in addition to 
clear sky absorption." This is why theoretical 
cloud radiative transfer models predict 
roughly the same clear-sky and cloudy-sky 
(all-sky) solar absorption. But independent 
studies by Ramanathan et al (I), Cess et al 
(2), and Pilewskie and Valero (3) indicate 
that real clouds (or clouds plus atmosphere) 
absorb more solar radiation than do models. 
Stephens interprets the data in the report by 
Cess et al (2) with the use of an atmospheric 
radiation model that adopts conventional 
plane-parallel clouds. He implements into 
this model a wavelength-dependent en­
hanced cloud absorption without adequate 
explanation; there are an infinite number of 
ways this calculation could be done, with 
probably infinite possible conclusions. 

Stephens states that a "significant prob­
lem of the analysis by Cess et al. is the 
assertion that reflection is a function of 
transmission," which refers to the albedo 
versus transmittance regression. But as was 
demonstrated (2) for the Boulder-GOES 
data (obtained from the Geostationary Op­
erational Environmental Satellite), the re­
gression analysis was consistent with a di­
rect determination of shortwave (SW) 
cloud-radiative forcing at the surface, 
Cs(S), and at the top of the atmosphere, Cs 

( f OA). This produced Cs(S)/Cs(TOA) = 
1.46, a value that is in agreement with 1.41 
from the regression analysis. Similar CS(S)/ 
Cs(TOA) values were obtained in the other 
studies (1-3). In contrast, theoretical mod­
els produce Cs(S)/Cs(TOA) - 1, and this 
difference can only be explained by the 
models underestimating cloudy-sky absorp­
tion relative to clear-sky absorption (1-3). 

Cess et al (2) adopted the regression 
analysis for two reasons. First, only surface 
insolation was available at the other sites so 
it was not possible to directly determine 
CS(S). Second, the regression analysis did 
not require clear-sky identification of the 
surface measurements, which was difficult 
to determine for some data. But it is a 
simple task to demonstrate [in a manner 
analogous to what was done for the Boul­
der-GOES data, and using data for which 
we can confidently identify clear surface 
measurements (4)] that the regression anal­
ysis is consistent with an alternate treat­
ment of TOA and surface measurements. 
With a denoting the TOA albedo and T 

the atmospheric transmittance (surface in­
solation divided by TOA insolation), it is 
straightforward to show that 

Aa/AT = - (N-NC)/(I-IC) (1) 

where N is the net downward SW radiation 
at the TOA, I is the surface insolation, and 
Nc and Jc refer to clear-sky conditions. One 
can compare Aa/AT (Fig. 1) as evaluated 
from regressions to that determined from Eq. 
(1), which addresses the issue of temporal 
and spatial sampling errors raised by Ste­
phens. Equation 1 requires only that such 
errors be random so that they average to zero 
when evaluating the numerator and denom­
inator of Eq. 1. The a versus T regression, 
however, explicitly requires all errors to be in 
the satellite measurements; if they were in 
the surface measurements, then a T versus a 
regression would be required, and Aa/AT 
would be increased by the factor 1/R2, where 
R is the correlation coefficient. Sampling 
errors are attributable to the satellite mea­
surements as demonstrated by the agreement 
between Eq. 1 and Aa/AT as evaluated from 
the a versus T regression (Fig. 1). If it were 
more appropriate, as Stephens suggests, to 
consider T as a function of a, then Eq. 1 
should agree with Aa/AT as determined 
from the T versus a regression. This is not 
the case (Fig. 1), except for Oklahoma, 
where the large R makes the choice of the 
regression immaterial. 

The reason that sampling errors are not 
attributable to the surface measurements is 
partially a result of temporal averaging of the 
surface measurements. Sampling errors occur 
because the satellite pixel measurements are 
instantaneous and over a grid that is much 
larger than the field of view of an upward 
facing pyranometer. For example, a single iso­
lated cloud could significantly impact the sur­
face measurement while having little impact 
on the satellite measurement; the reverse 
would occur if there were clouds over most of 
the satellite grid, but not over the surface 
instrument. But cloud systems move, so that 
temporally averaging the surface measure­
ments is equivalent to spatially averaging 
them over the satellite grid. The Oklahoma 
data demonstrate this point: The regression R 

Am. Boulder Cape Okla-
Samoa GOES Grim homa 
(0.802) (0.911) (0.793) (0.982) 

Fig. 1. Aa/AT determined from Eq. 1, from an a 
versus Tregression, and from a Tversus a regres­
sion, for four geographically diverse locations. 
Correlation coefficients are indicated at bottom. 
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Oklahoma surface averaging period (min) 

All-station spatial average . Reedsburg 

-0.8 0.901 0.926 0.934 0.934 
/I/- 

- 1 20 40 60 
Reedsburg surface averaging period (min) 

Fig. 2. (A) cx versus T correlat~on coeff~clents 
(Oklahoma) as a function of the surface averaglng 
period, wh~ch const~tutes an average of the near- 
instantaneous surface measurements temporally 
centered about the time of the ~nstantaneous sat- 
ellite measurements, (B) AalATfor a single station 
(Reedsburg) of the Wisconsin pyranometer net- 
work as a funct~on of the surface averaglng period 
at that site and as determined by spat~ally averag- 
Ing the entlre 11 stations withln the network. All- 
statlon spatial averages adopt 1 -minute surface 
averages and are invariant to the Reedsburg av- 
eraging per~od. The Reedsburg correlat~on coeffi- 
cients are shown, and R = 0.962 for the all-statlon 
spatlal average. 

is a maximum for a surface averaging period of 
roughly 60 minutes (Fig. 2A), which is the 
averaging period used for that data. The Wis- 
consin data (2) directly demonstrate equiva- 
lence between temporal and spatial averaging. 
The surface measurements are from a network 
of 11 pyranometers located within a roughly 
0.8' X 0.8' grid. The data are available as 
1-minute means, and when spatially averaged 
over all stations the resulting ha/AT is com- 
parable to that for a single station (Reedsburg) 
when the single-station measurement has 
been temporally averaged (Fig. 2B). For the 
other sites the surface measurements were 
available as 1-hour (American Samoa and 
Boulder) or half-hour (Cape Grim) means, 
and these temporal averages should minimize 
spatial sampling errors associated with the 
surface measurements as is consistent with 
Fig. 1A. 

The issue raised by Stephens concerning 
undersampling of boundary fluxes is an argu- 
ment often applied to aircraft measurements 
of an isolated cloud and refers to radiation 
escaping from the sides of the cloud that is not 
captured by the instruments above and below 
that cloud. Thus the cloud "appears" to ab- 
sorb excess SW radiation because of this loss 
of unmeasured energy. But this isolated-cloud 
argument is not appropriate to our satellite- 
surface measurements, nor to the aircraft mea- 
surements made by Pilewskie and Valero (3), 
both of which refer to cloud systems. A study 

Am. Boulder Cape Okla- 
Samoa GOES Grim homa 

(52) (30) (78) (31) 

p 1000 

Fig. 3. D~fference between I - I, for CCM2 versus 
the observed quant~ty In relat~on to the days~de- 
mean observed surface lnsolat~on The numbers 
In parentheses under each slte name represent 
A(/ - I,), Wm-? These data refer to dayslde 
means and thus represent the measurement s~g-  
nal, In contrast to 24-hour means that are appro- 
prlate for energy budget cons~derat~ons. 

E 
B 800 - - 

using a three-dimensional cloud model (5) 
concluded that the "simulation sueeests that 

Observed 
- Observed + A(/ - lc) - 

uu 

the shortwave absorptance of inhomogeneous 
clouds can be evaluated reasonablv bv means 
of appropriate spatial average." The point is 
that the "large positive and negative excur- 
sions-to-absorption" discussed by Stephens 
compensate when spatial averaging (3) or 
temporal averaging (2) is performed. 

Differences between the current obser- 
vations and models (as demonstrated in Fig. - 
3 with reference to version 2 of the Nation- 
al Center for Atmospheric Research Com- 
munity Climate Model) are large and con- 
stitute a signal in excess of uncertainties 
associated with the measurements (6).  
These model-versus-observational differ- 
ences, A(l - I,), were evaluated so that N 
- N, for CCM2 was constrained to that of 
the observations, thus removing differences 
in the T O A  radiation budget. The I - 1' 
com~arison also isolated cloud effects bv 
removing model-versus-observational dif- 
ferences in clear-sky insolation. This com- 
parison indicates that the model's clouds 
are underpredicting cloud S W  absorption 
by overestimating cloudy-sky surface inso- 
lation relative to clear skies; we see no other 
plausible explanation. For the four loca- 
tions, this amounts to an average surface- 
insolation overestimate by the traditional 
model of nearly 10% (Fig. 3). 

R. D. Cess 
M. H. Zhang 

Institute for Terrestrial and 
Planetary Atmospheres, 

Marine Sciences Research Center, 
State University of New York, 

Stony Brook, NY 11 794-5000, USA 
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Response: We address Stephens' criticisms of 
our report (1 )  in the order in which they 
appear in his comment. W e  find several 
errors in his arguments. 

Stephens argues that 20% absorption by 
clouds, around the asymptotic limit predict- 
ed by theory (2) ,  is in close agreement with 
the aircraft measurements in our report (1). 
However, our report states that (1 )  "maxi- 
mum absorption approaches 30% of the 
solar constant" indicating, contrary to Ste- 
phens' statement, that the aircraft results 
are not consistent with current understand- 
ing. We have reproduced (Fig. 1) in units of 
fractional absorption, the measurements of 
figure 2 in our report. 

Not all of the absorption by cloud occurs 
in place of (rather than in addition to) clear 
sky absorption, as Stephens suggests, but 
because there is considerable overlap in the 
absorbing bands of condensed water and 
water vapor, some cloud absorption occurs 
in place of clear sky absorption. We used 
this fact to adjust our estimate of cloud 
forcing ratio between the two aircraft to the 
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ratio that an observer on the ground would 
determine [note 9 in (1 )I. 

Stephens refers to "the usual approach 
to measure atmospheric absorption and lists 
the limitations of that method. But a two- 
aircraft technique (3), which was used dur- 
ing Tropical Ocean Global Atmosphere- 
Coupled Ocean Atmosphere Response Ex- 
periment (TOGA-COARE) and Central 
Equatorial Pacific Experiment (CEPEX) 
and which led to our results (1 ), eliminates 
the uncertainties (resulting from, in Ste- 
phens's words, "ill-defined volumes," but 
also from cloud advection and evolution 
circumstances Ste~hens does not mention) 
that plagued past aircraft studies. 

In his note 8, Stephens mistakenly states 
that "Correction methods were not used by 
Pilewskie and Valero. . . ." But our report 
states (p. 1628) "We averaged our flux mea- 
surements over 3-min periods to smooth 
higher frequency features that might other- 
wise lead to difficulties in interpreting data 
sets from the two aircraft ~latforms." Ste- 
phens incorrectly performs an additional 
averaging, which artificially produces a re- 
sult that he finds acceptable, in his note 6. 

Error analysis by Ackerman and Cox (5) 
(cited by Stephens), shows that for 20-km 
cloud cells, the undersampled horizontal 
flux divergence at the cloud edge is 10% of 
the incident flux at cloud top, drops to 5% 
1 km from the edge, and vanishes 2 km from 
the edge. The 3-min time integration in our 
data (I  ) translates into a 30-km path inte- 
gration, sufficient to eliminate this spurious 
horizontal divergence effect. Furthermore, 
such effects de~end  on the scale of cloud 
cells and would be less (in a relative sense) 
for larger, more uniform cloud systems. 

Fig. 1. Fractional cloud absorption (during TOGA- 
COARE and CEPEX) determined by normalizing 
the measured flux divergence in a 10 km to 20 km 
layer [figure 2 in (111 by the measured incident solar 
flux at 20 km. Dashed curves are computed ab- 
sorption for cloud thicknesses of, from top to bot- 
tom, 8, 2, 1, 0.5 km, and clear sky, with 8 km 
representing an asymptotic limit; from Twomey, 
1976 (2). The solid curve is the measured clear- 
sky absorption in the 10- to 20-km layer. 

Cloud types encountered in the tropical 
regions of study during TOGA-COARE 
and CEPEX were generally thousands of 
times meater (in area) than the 20 km 
clouds "referred' to by Ackerman and Cox 
( 5 ) ,  as evidenced by a typical tropical cloud 
system observed on 9 March (Fig. 2), which 
was comparable in size to the Australian 
continent. 

In our report (1 ), we did not use the 
terminology "data correction," preferred by 
Stephens, because what is actually implied 
is an additional data-processing procedure 
to compensate for an incomplete theory. In 
this case, theory cannot account for the 
transfer of radiant energy from real clouds, 
due to an incomplete understanding of all 
their complexities, from the micro- to mac- 
ro-physical scale. The data are indeed "cor- 
rect" even if it results from cloud svstems we 
cannot properly model. Additional process- 
ine is reauired to reduce the data to a state " 
conforming to a model we can understand. 
The 3-min integration we applied in ( I )  
had an identical effect as the procedures 
applied in the studies cited by Stephens (4, 
5), that is, it reduced the spurious effects 
due 'to horizontal flux divergence. The 
equality of such procedures is clearly stated 
in (4, p. 1052), "The Monte Carlo simula- 
tion suggests that shortwave absorptance of 
inhomogeneous clouds can be evaluated 
reasonably by means of appropriate spatial 
averaging." The basis for any "correction" is 
actually to enforce energy conservation 
principles, a much safer approach than de- 
riving a correction based on a theoretical 
umer limit of cloud absomtion. The elimi- 

L .  

nation of such spurious effects is evident in 

figure 1 or figure 2 in our report, where all 
data ~ o i n t s  lie above the zero axis. and in 
figure 1 in (1 ), where there is no spurious 
flux data. These should have been the first 
clues that those points represented averag- 
es; of course, the discussion in our report (1 ) 
explicitly mentioned this fact. 

Stephens makes the argument (in his ref- 
erence 7 and in the text where he states NIR 
albedo is measured more accurately than in- 
tegrated solar absorption) that multispectral, 
narrow-band measurements are more effec- 
tive than net broad-band flux measurements 
for determining cloud absorption. However, 
the relative accuracy of net flux versus NIR 
albedo is debatable, as some flux divergences 
we reported (1) were on the order of hun- 
dreds of watts per square meter, considerably 
more than the "residual" anticipated by Ste- 
phens. Furthermore, what one should com- 
pare is not albedo versus absorption (that is, 
flux divergence), but absorption versus ab- 
sorption. The retrieval of absorption from 
reflection (albedo) measurements requires 
an inverse procedure, inherently less accu- 
rate than direct observation. 

Another problem with this argument is 
that Stephens compares broad-band to 
spectral data, but one should be cautious of 
extending the results of his figure 3, where 
measurements were made in bands account- 
ing for about 0.5% of the available solar 
energy, to the entire solar spectrum. Al- 
though the magnitude of the absorption 
"anomaly" in NIR bands has been well 
documented (6), that magnitude cannot be 
extrapolated throughout the solar spectral 
region without the necessary observations 
in the bands where most of the solar energy 

- - 
[K] = 180 220 260 280 285 290 300 

Fig. 2. GMS IR brightness temperature of a cloud system on 9 March 1993 00:39 GMT over the tropical 
Pacific Ocean. 
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is absorbed in the atmosphere, the  NIR 
water vapor bands. 

Thus, we see n o  lvay of defending Ste- 
vhen's statement that conclusions based o n  
broad-band meas~~rernents (1)  are incons~s- 
tent n ~ t h  other exlstine data sets a h e r e  

u 

discrepancies \Yere found to occur betneen 
measurements in spectral bands and theory. 
Instead, the  broad-band solar absorption 
findings presented in our report (1)  are 
entirely consistent a i t h  existing spectral 
data sets, as both sho\v cloud absorption to  
be greater than the  magnitude predicted by 
theorv. 

Stephens makes another critical error 
n h e n  determining cloud absorption lvith the 
use of results shown in figure 6 of our report 
(1 ). Stephens deternlined cloud absorption, 
'4 ,  from the relationship A + R i T = 1. 
where R is reflectance and T is transmission, 
and h e  states that figure 6 in our report (1) 
indicates that a cloud with reflectance (al- 
bedo) 0.45 would absorb 0.40. His error is in 
assuming '4 occurs entirely in cloud. H e  does 
not account for the absorbine surface or for " 
the lower 10 km of the atmosphere as well. 
A n  appropriate relationship betneen R and 
'4 is R t A = 1, where A now is the 
fractional absorption by the combined atmo- 
sphere-surface system (7). T h e  analysis 
shown in figiire 6 in our report is not by itself 
sufficient to determine cloud absonxion; 
again we would refer the  reader to figure 2 in 
our report (or Fig. 1 here). Consequently, 
contrarv to Stevhens errolneous conclusion. 
in our report (1)  figure 1 is entirely consis- 
tent w ~ t h  figure 6 in our report, as those 

the same data. T h e  underlvine theme is that , " 
observations cannot be reconciled a i t h  the- 
ory, regardless of the units or method of 
formulating cloud absorption. 
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Interhelical Salt Bridges, Coiled-Coil 
Stability, and Specificity of Dimerization 

In their report ( I ) ,  Kevin J .  Lumb and 
Peter S .  Kim address the  contribution to the  
stability of the  G C N 4  leucine zipper of 
interhelical salt bridges between ionizable 
side chains at vositions e and o in the  

.3 

heptad repeat denoted gabcdef (residue i in 
chain 1 1~1th residue i' i i In chain 2, g to 
e'). W i t h  the  use of 13C-nuclear magnetic 
resonance spectroscopy (NMK), they mea- 
sured the  pK, (where K, is the  acidity con- 
stant) values of two pairs of Glu side chains 
potentially involved in interhelical salt 
bridges a i t h  Lys side chams in a synthetic 
model of the  holnodilneric leucine zipper of 
G C N 4  (GCN4-p 1) .  

Lumb and Kim (1)  state that potential 
salt bridges betneen G L L I ' ~ , ~ ~ '  and Lys27',27 
do not contribute to the  stabilitv of GCN4-  
p1 and that potential salt bridges between 
~ l ~ : r , 2 > '  and Lys'j'~" are destabilizing rel- 

atir e to alternative neutral-charge Interac- 

tions. They conclude that i t o  i' + 5 inter- 
helical salt bridges will not necessarilv con- " 

tribute favorably (and in  some cases will be 
~lnfavorable) to coiled-coil stability and 
dilnerization specificity. They suggest that if 
there was a favorable electrostatic interac- 
tion in the  folded GCN4-p 1, the  pK, of Glu 
side chains should have been lolver than in 
the  unfolded form. 

Lumb and Kim's interpretation of their 
results is not consistent a i t h  the  experi- 
mental findlngs that charged side chains a t  
these positions have been sho\vn to  play a 
key role in dilnerization specificity (het- 
erodimer formation) of Fos-JLIII leucine zip- 
pers and de novo designed coiled coils (2).  
Electrostatics have also been shown to  con- 
trol chain orientation (parallel versus anti- 
parallel) in model coiled coils (3) .  Destabi- 
lization of homodimers bv side chains bear- 
lng like charges at these positions is the  

mechanism proposed to favor heterodilner 
formation where potential interhelical i to 
i' t 5 salt bridges can form (2 ,  3) .  

Double-mutant cycle analyses carried 
out in  our laboratory o n  designed coiled 
coils have shown that the  net  electrostatic 
contribution per interhelical Glu-Lys salt 
bridge is -0.4 kcal/mol (4)  and + O . i  kcall 
rnol per Glu-Glu repulsion (5) .  

Because GLLL''~~~' are involved in hydro- 
phobic interactions n i t h  Va123'.23 through 
their methylenes [see figure 2 C  of (1 )], the 
solvent accessibly of the  charged carboxylate 
should accordingly be, o n  a time average, 
lorver in the  folded than in the  unfolded 
forn~.  Therefore, in the  folded form of 
GCN4-1-71, will likely suffer a de- 
crease in solvation free energy (positive 
A 1 G  solvation). Unless there is strong evi- 
dence that this likely loss of solvation free 
energy is exactly compensated by a negative 
lAGLji,,,, tern1 or that both of these terms 
are equal to zero, one cannot conclude that 
there is n o  favorable contribution to the 
stability of GNC4-pl  from electrostatic in- 
teractions (negative AAG int) arising from 
the putative salt bridges betneen G ~ L I ~ ~ . ' ~ '  
and L,\;S~'',~' o n  the basis of no  change in the 
pK~, of G ~ L I ~ ~ . ' ~ ' .  011 the other hand, hydro- 
phobic interactions inr~olving G ~ L I ~ ' ~ ~ ~ '  in 
the folded form could play a crucial role in 
the net electrostatic contribution of these 
salt bridges to coiled-coil stability. A de- 
crease in solvation free energy of the  charged 
carboxylates of G ~ L I ~ ~ ~ ~ ~ '  in the folded form 
could be compensated for by the formation 
of hydrophobic interactions (involving the 
methylenes of GLLL~~ ' '~ '  and Va123'.23 side 
chains a t  positions a),  leaving a net stabili- 
zation provided by purely electrostatic inter- 
actions between Glu and Lys side chains at 
neutral pH, as determined by double-mutant 
cycle analysis o n  de novo designed coiled 
coils in our laboratory (4) .  

Lumb and Kim (1)  state that n h e n  
GlU20,,?0' are replaced by G l n  residues, the 

stability of GCN4-p l  is increased. T o  ex- 
plain this result, they propose that G l n  side 
chains pack more efficiently than Glu  side 
chains a t  the dimer interface. This is more a 
consequence rather than a n  explanation. 
T h e  solvation free energy of a neutral polar 
group is about 60 kcalllnol less than that of 
a charged group (6).  Therefore the  fact that 
the  Gln'o~2" analog of GCN4-p l  is more 
stable likely results from a significantly low- 
er cost of solvation free energy upon pack- 
ing at the  dilner interface. L,loreover, re- 
placing the  charged carboxylate by a neu- 
tral carboxamide group could alleviate any 
destabilizing interaction of the  charged car- 
boxylate n i t h  polar groups in its surround- 
ing a t  the  dilner interface. Both effects 
should allow a stronger net contribution of 
hydrophobic interactions at the  dimer in- 
terface from hydrophobic moleties of 
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