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The human Dubin-Johnson syndrome and its animal model, t h e T R  rat, are characterized 
by a chronic conjugated hyperbilirubinemia. T R  rats are defective in the canalicular 
multispecific organic anion transporter (cMOAT), which mediates hepatobiliary excretion 
of numerous organic anions. The complementary DNA for rat cmoat, a homolog of the 
human multidrug resistance gene (hMRPl), was isolated and shown to be expressed in 
the canalicular membrane of hepatocytes. In the TR- rat, a single-nucleotide deletion in 
this gene resulted in a reduced messenger RNA level and absence of the protein. It is likely 
that this mutation accounts for the T R  phenotype. 

T h e  liver plays a major role in the detoxi- 
fication of manv endogenous and xenobi- 
otic, lipophilic compouids. Detoxification is 
accomnlished bv transferase-mediated coniu- 
gation'with gluiathione, glucuronide, or shl- 
fate moieties, resulting in negatively charged, 
amphiphilic compounds that are efficiently 
secreted into bile or urine. Henatobiliarv ex- 
cretion of these conjugates is mediated l;y an 
adenosine triphosphate (ATP)-dependent 
transport system, cMOAT, located in the api- 
cal (canalicular) membrane of the hepatocyte 
(1). The identification of a transport-defi- 
cient mutant rat strain, the TR- rat (2), has 
contributed to the functional characterization 
of cMOAT (1 ). These rats have an autosomal 
recessive defect in the hepatobiliary excretion 
of bilirubin glucuronides (3) and other multi- 
valent organic anions, including glutathione- 
S-conjugates (for example, leukotriene C,) 
and 3-OH-glucuronidated and -sulfated bile 
salts (4). Thus far, neither the protein nor the 
complementary DNA (cDNA) encoding 
cMOAT have been identified. Transnort 
studies in plasma membrane vesicles from 
cells overexpressing the human multidrug re- 
sistance-associated protein 1 (hMRP1) (5) 
have demonstrated a role for hMRPl in the 
ATP-dependent transport of the glutathione 
conjugates LTC, and dinitrophenyl glutathi- 
one (GS-DNP) (6). Because these substrates 
are also transported by the putative cMOAT 
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protein, MRPl is a possible candidate gene for 
cMOAT. The extremely low expression of 
MRPl in liver (5, 7) and the recently dem- 
onstrated lateral localization of MRPl ( B ) ,  
however, renders it unlikely that this gene 
product is responsible for biliary organic anion 
secretion. Furthermore, the transport defect in 
the TR- rat appears to be specific for liver 
(9), whereas MRPl is expressed in all human 
tissues (7). 

We hypothesized that cMOAT might be 
a liver-specific homolog of MRP1. To  ob- 

ing region of the ~ M R P I  sequence. When 
analyzed on Northern (RNA) blot, this 
PCR fragment hybridized with a single, 9.5- 
kb transcript in all Wistar and TR- rat 
tissues examined, with high expression in 
lung and testis but no detectable expression 
in liver. Because this expression pattern 
resembled that of hiMRP1 in human tissues 
(7) ,  we assumed that we had isolated a part 
of the rat homolog of hMRP1, rat mrpl 
(mrp l ) .  In order to find the putative 
cMOAT gene, we screened two rat liver 
cDNA libraries, using the rmrpl fragment 
obtained as a probe (1 1) .  This resulted in 
the isolation of a full-length cDNA with a 
single open reading frame of 1541 amino 
acids (Fig. 1). O n  the basis of similarity 
searches (1 2),  the protein was identified as 
a member of the ABC transporter family 
(13), with highest overall identity to 
hMRPl (47.6%) (51, yeast cadmium factor 
1 (41.8%) (14), and the human cystic fi- 
brosis transmembrane conductance regula- 
tor (30.2%) (15). The amino acid sequence 
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identity with hMRPl ranged from 38 to 
61% outside the ATP-binding domains to 
67 and 75% in the first and second ATP- 
binding domain, respectivply. Northern 
blot analysis of rat tissues with a 1-kb re- 
striction fragment of this cDNA revealed 
three different transcripts, ranging from ap- 
proximately 6.5 to 9.5 kb, with high expres- 
sion only in liver and low expression in 
kidney, duodenum, and ileum (Fig. 2A). 
The abundance of these transcripts was 
strongly decreased (but not absent) in liver 
(Fig. 2B) and other tissues of the TR- rat, 
which suggests that these transcripts were 
related to the defect in the TR- rat. The 
three transcripts observed were probably de- 
rived from a single gene, because the level 
of all three transcripts was decreased in the 
TI- rat. The decreased abundance of this 
transcript in TR- liver suggests that the 
isolated cDNA encoded cMOAT. 

To examine the expression level and 
cellular localization of the cMOAT protein 
in hepatocytes, we produced a monoclonal 
antibody (mAb M, 111-5) to a bacterial 
fusion protein containing the 202-amino 
acid COOH-terminal end of the sequence 
(16). O n  protein blots, this antibody de- 
tected a protein of -200 kD in the cana- 
licular, but not the basolateral, plasma 
membrane fraction of the Wistar rat liver 
(Fig. 3). This molecular size was similar to 
that of hMRPl and in good agreement with 
the predicted molecular size of the cMOAT 
protein. The 200-kD protein was complete- 
ly absent from the canalicular membrane 
fraction of the TR- rat (Fig. 3), which 
correlated with the decreased mRNA level 
in TR- rat liver (Fig. 2B). Again, this 

finding was in good agreement with the 
defect observed in TR- rats, which lack a 
functional transport system for organic an- 
ions in the canalicular membrane. 

Thus, it is likely that we have isolated 
the cDNA encoding the cMOAT protein, 
which is deficient in the TR- rat. Because 
the cmoat mRNA was not completely ab- 
sent in TR- liver, it was possible to amplify 
the complete cDNA by PCR (I 1) with 
various specific primer sets. To  identify the 
nature of the genetic defect in TI- rats, we 
sequenced the obtained cDNA. Analysis 
revealed a 1-bp deletion at amino acid 393, 
which results in a frameshift and subsequent 
introduction of a stop codon at position 401 
(Fig. 1). This deletion results in the destruc- 
tion of an Nla 111 restriction site, which 
provided a means to quickly confirm the 
presence of the mutation in cDNAs from 
various tissues (1 7). The low mRNA ex- 
pression in TR- rats (Fig. 2B) might be due 
to the fact that the frameshift causes pre- 
mature termination of translation and sub- 
sequent increased degradation of the 
mRNA. 

Our results imply a correlation between 
the presence ofthe cmoat gene, the absence 
of the gene product from the canalicular 
membrane, and the defined congenital 
transport defect in T I -  rats. A recent study 
suggested lateral as well as canalicular lo- 
calization of the rMRPl gene product in 
Wistar liver, but only a lateral localization 
in TR- liver (1 8), and suggested a role for 
MRPl in the (defective) hepatobiliary ex- 
cretion of organic anions in TR- rats. We 
have demonstrated an exclusive canalicular 
localization of cMOAT (Fig. 3). O n  the 

Fig. 2. (A) Northem (RNA) blot analy- 9 8 TR- WIS 

SIS of 2 IN of PoIY(A)+ RNA from A $?< $* zC +A Wlstar rat tissues hybridized to a 1 -kb Q ~ C ~ @ ~ ~ C , ~ ~ ~  

Hlnd Ill-Ava I I  cDNA fragment of 8$9~?$&8@0 - - - S F  kb 

cmoat. RNA was analyzed as de- 9 5 
7 5 

me." 95 
scrlbed (28). Prolonged exposure of 
the film revealed no detectable ex- 4 4 
presslon in tissues other than kldney, 
duodenum, and ileum. (B) Northern 

GAPDH, I 
-2.4 

blot analysis of 2 kg of poly(A)+ RNA 1(). GAPDH aIm--2.4 - 
from Wistar and TR- rat liver and 1.4 .1.4 
hepatocytes hybridized with the 
same probe as in (A). The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) signal is shown at the 
bottom. Molecular size standards are indicated at the right in kilobases. 

Fig. 3. lmmunoblot analysis of cMOAT and P-glycoprotein in canalicular k~ 1 2 3- 4 
and basolateral membrane fractions of Wistar and TR- rat hepatocytes. 200- - --* -MOAT 
Lane 1, Wistar basolateral membranes; lane 2, Wistar canalicular mem- ,,,- 
branes; lane 3, TR- basolateral membranes; and lane 4, TR- canalicular 
membranes. (Upper panel) The blot was incubated with mAb M, 111-5 666- 

specific for cMOAT (29). This antibody did not cross-react with the - -PGP 
hMRPl protein as tested in total lysates from the MRP-overexpressing 
cell line GLC4/ADR (20). (Lower panel) lmmunodetection of P-glycoproteins with mAb C219 in the same 
membrane preparations. The 150-kD P-glycoproteins are expressed exclusively in canalicular mem- 
branes (30). Differential staining of the two fractions demonstrates the separation of the two membrane 
domains, with slight contamination of the basolateral fraction by canalicular membranes. Molecular size 
markers are indicated on the left in kilodaltons. 

other hand, hMRPl is routed only to the 
lateral domain of the plasma membrane of 
pig kidney epithelial cells (8). This finding 
suggests a differential localization of MRPl 
(basolateral) and cMOAT (canalicular) 
and implies that cMOAT and not MRPl is 
involved in biliary organic anion transport. 
It has also been suggested (18) that an 
isoform of MRPl exists in rat liver that is 
derived from the same gene by alternative 
splicing based on the detection of two dif- 
ferent sequences for the second ATP-bind- 
ing domain and only one for the first ATP- 
binding domain. Our data, however, show 
that there are two different sequences for 
the first ATP-binding domain in mrpl and 
cmoat, which suggests that MRPl and 
cMOAT are encoded by two different 
genes. 

We conclude that the MRP homolog, 
identified here, encodes cMOAT, and that 
a 1-bp deletion, resulting in a truncated, 
nonviable protein, is responsible for the 
impaired transport of organic compounds 
from liver to bile in the TR- rat. TR- rats 
have the same phenotype as patients with 
the Dubin-Johnson syndrome, characterized 
by mild chronic conjugated hyperbiliru- 
binemia (19). Isolation of the human ho- 
molog of cMOAT will be required to elu- 
cidate the nature of the defect in humans. 
Overexpression of hMRPl confers resis- 
tance of human tumor cells to a number of 
cytostatic drugs (20, 21), which is depen- 
dent on intracellular glutathione levels 
(22). Apparently, both MRPl and cMOAT 
are involved in the excretion of organic 
anions from cells. Thus, overexpression of 
cMOAT, like that of MRP1, might also 
confer resistance to cancer cells against cy- 
tostatic drugs or their metabolites. 
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IRAK: A Kinase Associated with the 
Interleu kin-I Receptor 

Zhaodan Cao,* William J. Henzel, Xiong Gao 

The pleiotropic biological activities of interleukin-1 (IL-1) are mediated by its type I receptor 
(IL-1 RI). When the ligand binds, IL-1 RI initiates a signaling cascade that results in the 
activation of the transcription regulator nuclear factor kappa B (NF-KB). A protein kinase 
designated IRAK (IL-1 receptor-associated kinase) was purified, and its complementary 
DNA was molecularly cloned. When human embryonic kidney cells (cell line 293) over- 
expressing IL-1 RI or HeLa cells were exposed to IL-1, IRAK rapidly associated with the 
IL-1 RI complex and was phosphorylated. The primary amino acid sequence of IRAK 
shares similarity with that of Pelle, a protein kinase that is essential for the activation of 
a NF-KB homolog in Drosophila. 

Interleukin-1 is a nroinflarnmatorv cvto- , , 

kine that functions in the generation of 
systemic and local responses to infection, 
injury, and immunological challenges. Pro- 
duced mainly by activated macrophages and 
monocytes, IL-1 participates in lymphocyte 
activation, fever, leukocyte trafficking, the 
acute phase response, and cartilage rernod- 
eling ( 1 ). The biological effects of IL-1 are 
mediated bv IL-lRI located on the nlasma 
membrane bf responsive cells (2). B'inding 
of IL-1 to its receptor triggers activation of 
NF-KB (3). NF-KB constitutes a family of 
related transcription factors that regulate 
the expression of genes bearing cognate 
DNA binding sites (4). In most cells, NF- 
KB is retained in the cytoplasm by inhibi- 
tory proteins designated IKB's (5). In re- 
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sponse to a variety of extracellular stimuli 
(including IL-1, tumor necrosis factor, mi- 
togens, oxidative stress, lipopolysaccharide, 
and double-stranded RNA),  IKB's are de- 
graded, releasing NF-KB to enter the nucle- 
us where it activates an array of genes (6). 

Genetic studies examining the forma- 
tion of dorsoventral polarity of the Dro- 
sophila embryo have shed light on  the intra- 
cellular signaling pathway leading to NF-KB 
activation. The  protein Dorsal, a hornolog 
of NF-KB, is activated during embryogenesis 
to regulate gene expression essential for es- 
tablishing dorsoventral polarity (7). Like 
NF-KB, Dorsal activity is suppressed by an 
IKB-like molecule designated Cactus (8). 
Activation of Dorsal is initiated by the 
interaction of an extracellular ligand desig- 
nated Spaetzle with a membrane-bound re- 
ceptor designated Toll (9). A potential con- 
nection between the IL-1 and Spaetzle sig- 
naling pathways was found on  the basis of 
the sequence similarity shared by the intra- 
cellular domains of IL-1RI and Toll (10). 
Two other genetically identified molecules, 
Tube and Pelle, function downstream of 
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