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Heparin Structure and Interactions with Basic 
Fibroblast Growth Factor 

S. Faham, R. E. Hileman, J. R. Fromm, R. J. Linhardt,* 
D. C. Rees* 

Crystal structures of heparin-derived tetra- and hexasaccharides complexed with basic 
fibroblast growth factor (bFGF) were determined at resolutions of 1.9 and 2.2 angstroms, 
respectively. The heparin structure may be approximated as a helical polymer with a 
disaccharide rotation of 174" and a translation of 8.6 angstroms along the helix axis. Both 
molecules bound similarly to a region of the bFGF surface containing residues asparagine- 
28, arginine-121, lysine-126, and glutamine-135; the hexasaccharide also interacted with 
an additional binding site formed by lysine-27, asparagine-102, and lysine-136. No sig- 
nificant conformational change in bFGF occurred upon heparin oligosaccharide binding, 
which suggests that heparin primarily serves to juxtapose components of the FGF signal 
transduction pathway. 

D e s p i t e  the importance of heparin and 
related glycosarninoglycans as components 
of the  extracellular matrix, as participants 
in signal transduction pathways, and as 
therapeutic agents, atomic resolution struc- 
tures are not available for heparin-based 
species larger than monosaccharides [re- 
viewed in ( I ) ] .  This ahsence of precise 
structural information reflects difficulties in 
obtaining homogenous samples of heparin- 
Jerived molecules. T h e  heparin polymer 
consists of a hasic disaccharide reneat unit 
comprised of L-iduronic acid (Iciu) and D- 
glucosamine (GlcN)  joined hy cr(1+4) 

S. Faham and D C. Rees, D~v~sion of Chem~stry and 
Chemcal Engineering 147-75CH, Cal~fornia lnst~tute of 
Technology, Pasadena, CA 91 125, USA. 
R. E Heman, J. R. Fromm, R. J. L~nhardt. D~v~s~on  of 
Medicinal and Natural Products Chem~stry, College of 
Pharmacy, Un~versity of Iowa, Iowa Cty, IA 52242, USA. 

'To whom correspondence should be addressed. 
E-mail. rees@ctray.caItech.edu and I~nhardt@blue.weeg. 
ulowa.edu 

linkages (Fig. 1A) .  A typical heparin disac- 
charicie contains a total of three sulhte 
groups: one  attached to the 2-hyciroxyl 
group of Idu and two linked to  the  2-amino 
and 6-hyJroxyl groups of GlcN. T h e  related 
glycosa~ninoglycan heparan sulfate has a 
similar structure containing D-glucuronic 
acid. L-Idu. ancd D-GlcN hut is less exten- 
sively sulfateci. Successive disaccharides 
within heparin are related hy a twofold 
screw operation, generated by a rotation 
angle of -1!O0 coupled to a translation of 
-8.0 to 8.7 A along the  helix axis (2) .  T h e  
structure of heparin may be approximated 
hy a rihhon with sulfate and carhoxyl groups 
o n  the  edges and hydroxyl and sugar ring 
oxygen atoms positioned o n  the surhces 
hetu~een these negatively charged groups. 
Although the  average structure of heparin 
is defined, local structi~ral alterations exist 
u~ i th in  the heparin polymer that are a result 
of heterogeneity in the sequence, conforma- 
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tion, and pattern of sulfation, all of which 
may be important for the polymer's interac- 
tions with other biomolecules. 

The participation of proteoglycans relat- 
ed to heparin in signal transduction path- 
wavs is exem~lified bv their involvement in 
the initial binding events between members 
of the fibroblast growth factor (FGF) family 
and their associated tyrosine kinase recep- 
tors [reviewed in (3)]. Heparin-like mole- 
cules mav enhance the activitv of FGFs. 
either through binding-induced changes in 
the structure and stabilitv of FGF or bv 
direct participation in FGF-receptor inter- 
actions, possibly by binding to both compo- 
nents or by binding multiple FGF molecules 
to facilitate receptor dimerization (4-8). 
Aside from their role in mediating FGF- 
receptor interactions, heparan sulfate pro- 
teoglycans in the extracellular matrix may 
also function to help sequester and localize 
FGFs in the vicinitv of the cell surface. 
These functional properties reflect se- 
quence-specific structural features of hepa- 
rin and other sulfated proteoglycans that 
permit productive binding interactions with 
FGFs. 

To establish a framework for probing the 
structures of henarin-related molecules and 
their interactions with proteins, we initiat- 
ed a crystallographic analysis of the hep- 
arin-basic FGF system. Because heparin it- 
self is too heterogeneous to be compatible 
with crystallization, homogeneous tetra- 
and hexasaccharide fragments of heparin 
(Fig. 1B) were prepared by heparinase di- 
gestion, purified to homogeneity, and struc- 
turally characterized (9). These fragments 
of heparin bind specifically to FGFs with 
dissociation constants that are similar to 
those for heparin reported by Mach et al. 
(10). 

After co-crystallizations of bFGF with 
both the tetra- and hexasaccharide hepa- 
rin fragments (1 1 ), the structures of these 
complexes were solved andorefined at res- 
olutions of 1.9 and 2.2 A, respectively 
(1 2) (Fig. 2). The two heparin fragments 
have essentially the same structure and 
make the same contacts with bFGF when 
possible (Fig. 3). The helical parameters of 
the heparin helix were estimated from the 
hexamer structure (1 3); the average ob- 
served helical narameters of a 174" rota- 
tion and an 8.k A translation per disac- 
charide are in good agreement with the 
x-ray fiber $iffraction values of 180" and 
8.0 to 8.7 A, respectively, for the heparin 
polymer (2). The observed torsion angles 
of the heparin hexamer fall within the 
calculated allowed region for the heparin 
polymer and are close to those previously 
derived from nuclear magnetic resonance 
data (14). A stereochemically significant 
aspect of the heparin structure is the con- 
formation of the six-membered hexopyr- 

L 
'fl 1 2 3 4 5 6 

Fig. 1. (A) Chemical structure of the repeating disaccharide of heparin. (B) Structure of the heparin 
hexasaccharide fragment used for the crystallographic studies. The numbering system used here to 
identify the different sugar rings is indicated, with the nonreducing and reducing rings assigned numbers 
1 and 6, respectively. The analogous numbering system is used for the tetrasaccharide, except that the 
reducing sugar is assigned ring number 4. 

Fig. 2. F, - F, difference electron density map of the bFGF-hexasaccharide complex calculated at 
2.2 A resolution, with the hexasaccharide omitted from the structure factor calculation. The map (red) 
is contoured at 1.8 times the overall root-mean-square value of the map, with the refined structure of 
the hexasaccharide (blue) superimposed. The polypeptide chain of bFGF and the side chains of 
residues that interact with the hexasaccharide are represented in cyan and yellow, respectively. 

Fig. 3. (A) Stereodiagram of a superposition of the tetrasaccharide (green) and hexasaccharide (red) 
heparin fragments binding to bFGF. The sulfate ions located in a crystallographic analysis of unligand- 
ed bFGF (7 7) are represented by yellow. (B) Stereodiagram illustrating specific interactions between 
bFGF and the hexasaccharide fragment. The higher affinity binding site is colored magenta, whereas 
the lower affinity binding site is colored yellow. Sugar rings 1 and 3, which do not contact this region 
of bFGF, are blue. The side chains and residue numbers of amino acids in bFGF that interact with the 
hexasaccharide are indicated. Structural figures for this paper were prepared with the program 
MOLSCRIPT (28). 
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anose ring of the Idu residues, which can 
exist in a chair form designated 'C4 or in 
a skew boat conformation termed 'So (15). 
The  hexasaccharide fragment of heparin 
used here contains two Idu rings: Idu-3 of 
the hexarner was observed to be in the 'C, 
chalr conformation, whereas Idu-5 adopt- 
ed the 's, skew hoat contormatlon. Con- 
sequently, mult~ple contormat~ona of Idu 
can be adopted In the blndlng of heparln 
to FGF, and the confc)rmat~onal flex~blllty 
of t h ~ a  realdue may pla) a role In the 
recognltlon and hlndlng properties of hep- 
arm to ~ t s  varlous blologlcal l~ganda 

The structures of the henarln tetrasac- 
charlde and hexasaccharlde cocrystalllzed 
w ~ t h  human bFGF Jlrectlv demonstrate 
that the primary binding site'for heparin on 
this protein is generated by residues 27 and 
28, 101 to 103, and 120 to 137. With the 
exception of the region around Asn'"?, 

these assignments are In overall agreement 
w ~ t h  those of prevloualy lden t~f~ed  hFGF 
resldues associated ~71th  heparln blndlng 
(16-22) The surface area (23) lost by 
hFGF resldues upon blndlng of the tetrasac- 
charlde and the hexasaccharlde to bFGF 
Tay he calculated to be -180 and -290 
A', respectlbely The larger contact reglon 
between bFGF and the hexasaccharlde, rel- 
atlbe to that of the tetrasacchar~de, 1s con- 
slstent ~71th  the h~gher  blndlng atflnlt) of 
bFGF for the hexasaccharlde aa measured 
b j  mlcrotltratlon calorimetry (9 )  Man), 
but not all, of the apeclflc lnteractlons he- 
taeen hFGF and the heoann hexamer are 
mediated by negatively charged groups on 
the heparin fragment (Fig. 3 and Table 1). 
For the sequences used in this study, rings 1 
to 4 of the two heparin fragments bind in a 
similar fashion to bFGF, which indicates 
that the heparin binding region may be 

Table 1. Polar (Ion palr and hydrogen bond) contacts between bFGF res~dues and tetrasacchar~de and 
hexasaccharlde fragments of hepar~n lnteract~ons between atoms separated by less than 3 6 A are 
~nd~cated The h~gher aff~n~ty reglon IS def~ned by contacts ~nvolv~ng GlcN-2 or Idu 3, whereas the lower 
aff~n~ty reglon ~nvolves contacts to ldu-5 or GlcN-6 Model~ng stud~es suggest that the hexasaccharlde 
fragment would form most of the contacts that a longer, lhnear hepar~n hel~x would make w~th a bFGF 
monomer Latt~ce contacts ~nvolv~ng polar lnteract~ons between the hexasaccharlde and crystallographl- 
cally related bFGF molecules were observed between atoms In rlng 1 and R108 and N72, rlng 2 and K47 
and S48, and rlng 6 and R34, H36, and E46 (29) 

- - 

Hepar~n bFGF Closest d~stance (A) 

Res~due Atom (or group) Res~due Atom Tetramer Hexamer 

further separated Into h~gher  and lower at- 
flnlty reglons The hlgher afflnlty slte IS 

deflned aa the reglon of the bFGF surface 
common to the blndlng of rlnes 2 and 3 of 
both fragments, whereas the lower affinity 
site is occup~ed by rings 5 and 6 only in the 
complex of the longer hexasaccharide with 
hFGF. The higher affinitv binding site in- 
teracts with hiparin throuhh the si&e chains 
of residues AsnZS, ArgIZ', L ~ S ' ~ ' ,  and 
Gln"5, whereas the lower affinity slte uses 
the side chains of residues LysL', Asnlo', 
and Lys"'. The four residues that form the 
hlgher aftlnlty reglon cc>rrespond exactly to 
the fi,ur res~duea ldent~fled bv Thomnson et 
al. (16) as having the greaiest lmp'act on 
the binding of hFGF to heparin. 

Although other anlonlc compounds 
have been crvatalloeranh~callv obaerved to 
hind to the sa'me generh reg& of the FGF 
surface as these heparin fragments (1 9-22). 
because of their distinct chemical structures 
the s~ecif ic  interactions with FGF are gen- 
erally different. One exception is provided 
by the 2-N-sulfate of GlcN-2 of the heparin 
fragments, which corresponds to a sulfate 
group of sucrose octasulfate (21) and a 
bound sulfate from crystallization of the 
unliganded protein (17) (Fig. 3A) .  Sulfate 
prouns are not reuuired for bindine to this ,~, 

general region, however, because Ornitz et 
al. (22) found that a nonsulfated trisaccha- 
ride can blnd to the h~gher  atflnlty reglon of 
hFGF by uslng only carhoxyl and h)drox)l 
group lnteractlons w ~ t h  proteln reslduea 

T h e  conservation of resldues formlng 
the heparln hlndlng reglon provldea Im- 
portant indications concerning the extent 
to which other members of the FGF familv 
can uae blndlng lnteractlons exhlblted In 
these complexes of hFGF w ~ t h  heparin 
fragments The  FGF farn1l7, currentlj con- 
alsts of nlne members, lncludlng bFGF, 
ac~dlc  FGF, HST, and KGF, w ~ t h  aequence 
~ d e n t ~ t ~ e s  barylng from 30 to 55% (24). 
From a sequence allgnrnent of t h ~ a  tamlly, 

Table 2. Sequence al~gnment (29) of members of the FGF family In the tacts lnvolv~ng ldu-5 or GlcN-6, The accession numbers for the bFGF, 
heparin binding region. The W~sconsin Sequence Analysis Package, verslon aFGF, INT2, HST, FGF5, FGF6, KGF, AIGF, and FGF9 sequences are 
8, was used to generate the alignment (301, Heparin res~dues contacting A26642, A24820, S04742, Tvhuhs, Tvhuf5, 504204, A36301, A46245, 
side chain atoms of the indicated residues are listed. "High" affin~ty refers and A481 37, respect~vely, of the Prote~n ldent~f~cation Resource protein 
to contacts involving GlcN-2 or ldu-3, whereas "low" affin~ty refers to con- sequence database. 

Res~due 
Res~due of fam~ly member 

Hepar~n 
number contact 

Aff~n~ty 
bFGF aFGF INT2 HST FGF5 FGF6 KGF AlGF FGF9 

2 7 K S A N R N R R R GlcN-2-N-SO, LOW 
GlcN3-OH 

28 N N T V V V T T T GlcN-2-N-SO, High 
Idu3-OH 

102 N N L N N N N N N GlcN-2-N-SO, LOW 
121 R K G K K K Q R K Idu3-OH High 
126 K K R K K K V R R GlcN-2-N-SO, High 

Idu2-0-SO3- 
135 Q Q Q M H M Q Q Q Idu2-0-SO, High 
136 K K K K I T K R K Idu6-CO2- LOW 
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the conservation of resid~les with side 
chains that interact with heparin may be 
evaluated (Tahle 2). N o  residue in the 
heparin hinding region is cornpletely con- 
served throughout the FGF family; fur- 
thermore, even the charee of the residue 
side chain fails to he strictly maintained. 
As a result of these sequence variations, it 
is likely that different members of the FGF 
familv use different contacts for the bind- 
ing tb heparin, as suggested by heparin 
desulfation experiments (8). For example, 
although bFGF rnakes a specific contact to 
the 2-0-sulfate group of Idu through the 
side chain of the substitution of 
this residue hy Met in HST should inter- 
fere with this interaction. which is con- 
sistent with the observation that HST can 
hind heparin in the ahsence of 2-0-sulfate 
groups (8).  Perhaps the most dramatic sub- 
stitutions involve Asn2%nd Lys"" which 
are changed to Thr  and Val, respectively, 
in KGF. These substitutions w o ~ ~ l d  be ex- 
pected to hlock or alter the contact of 
these side chains with the GlcN 2-N- 
sulfate group in the high-affinity site. This 
alteration in the interactioll between hep- 
arin and KGF relative to that of bFGF rnav 
contribute to the differential effects of 
heparan sulfates on KGF relative to their 
effects on  acidic FGF (25) .  

The  binding of these heparin fragments 
to hFGF is not associated with any signif- 
icant conformational change in the poly- 
peptide backhone; the root-mean-square 
deviation based on  the Ca positions be- 
tween the heparin hexamer-bFGF tor;- 
plex and the ~ l n b o ~ l n d  bFGF is 0.34 A.  
Similar observations have heen reworted 
for the binding of sucrose octasulfate (21 ) 
and nonsulfated trisaccharides to FGFs 
(22) .  Consequently, it appears unlikely 
that a heparin-induced conformational 
change in bFGF mediates initiation of the 
signal transduction pathway. Our results 
instead support heparin either binding 
multiple FGF molecules to promote recep- 
tor dimerization or facilitating fi~rmation 
of an FGF-receptor cornplex by binding 
both components (5-8). The  possibility 
that protein-protein associations involved 
in signal transd~lction uathwavs mav be 
regulated by binding inieractions to 'spe- 
cific molecules such as heparin is not 
unique to the FGF system, but rather re- 
flects a mechanism of general biological 
relevance 126). , , 

The heparin polymero contains about 
eight sugar residues in 34 A along the helix 
axis, which is approximately the width of an 
FGF molecule. Conseuuentlv. FGFs could 
bind to one side of a heparin polymer with 
a density of one FGF molecule per eight 
sugar residues, as reported for bFGF (27). 
As observed in this crystal structure, how- 
ever, not all of the heparin surface is buried 

in the interaction with FGF. so that binding 
,7 

sites along the heparin rnolec~lle would he 
available for interaction with additional li- 
gands, such aa other FGF molecules or the 
FGF recemor. Theae molecules could Inter- 
act with heparin groups that are otherwise 
not used in FGF hinding, such as the 6 - 0 -  
sulfate groups, or they could bind to sites on 
heparin not occupied by FGF and interact 
with the same groups. With the sequence 
variability exhibited by hoth heparin and 
different rnernhers of the FGF familv. a di- , , 
verse set of hinding interactions hetween 
FGFs and heparin-like molec~~les occurs, 12, 
and these are reflected in the differing re- 
sponses and requirernents exhibited by the 
FGF farnily for these sulfated polysacchar- 
ides. In particular, variation in the carbo- 
hydrate sequence or sulfation pattern might 
he used to specify the presence or absence of 
binding sites in heparin for FGF and other 
molecules, therehy permitting assembly of 
the appropriate complex of molecules for 
the initiation of signal transduction. 
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The p21 RAs Farnesyltransferase cu Subunit in 
TGF-P and Activin Signaling 

Tongwen Wang,* Paul D. Danielson, Bi-yu Li, Paresh C. Shah, 
Stephen D. Kim, Patricia K. Donahoe* 

The oc subunit of p21 farnesyltransferase (FNTA), which is also shared by geranylgera- 
nyltransferase, was isolated as a specific cytoplasmic interactor of the transforming 
growth factor-@ (TGF-p) and activin type I receptors with the use of the yeast two-hybrid 
system. FNTA interacts specifically with ligand-free TGF-p type I receptor but is phos- 
phorylated and released upon ligand binding Furthermore, the release is dependent on 
the kinase activity of the TGF-P type II receptor. Thus, the growth inhibitory and differ- 
entiative pathways activated by TGF-@ and activin involve novel mechanisms of serine- 
threonine receptor phosphorylation-dependent release of cytoplasmic interactors and 
regulation of the activation of small G proteins, such as p21 

C e l l  growth and differentiation are regu- 
lated and delicately balanced by the activ- 
ities of grou~th stimulators and suppressors. 
Although much is known about growth 
stirnulatory pathways that act by means o t  
tyrosine kinase recentors ( I ) ,  little is 
known about the gro~vth inhibitory path- 
ways exemplitied by the serine-threonine 
kinase receptors of the TGF-P tamily. Re- 
cent progress in cloning and characteriza- 
tion o t  the TGF-6 tamily receptors re- 
vealed that two membrane serine-threo- 
nine kinases, the type I and type I1 recep- 
tors, torm heteromeric complexes. In this 
functional signaling unit, the TGF-P type 
I1 receptor phosphorylates and possibly 
thereby activates the tvpe I recentor to , 
signal AoLvnstream pathways ( 2 ,  3 j. H o w  
ever, the molecular mechanisms involved 
in the activation o t  type I receptor-medi- 
ated signaling will remain unknown until 
direct dou~nstrea~n cytoplasmic interactors 
are identitied. 

Because conventional biochemical 
methods to isolate cytoplasmic proteins in 
tyrosine kinase receptor do~vnstream path- 
ways have not identitied intracellular inter- 
actors of the serine-threonine kinase recen- 
tors, u7e used a moditied version ot the yeast 
tuw-hybrid system (4.  5).  As determined by 

binding and ti~nctional assays (6,  i ) ,  the 
cytoplasmic domain of the TGF-P type I 
receptor, also known as ALK5 (6)  and R4 
(8), was used as a bait to screen a human 
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(blue on ~lates with X-Gall 

54 (1)+---~'~\~~)-45 (Ill) 
Darkblue Blue Pal! blue 

L 1 1 
FKBPl2 FNTA (S) AFNTA (L) 

B A = 40-44 

FNTA (L) 

I 0 8 7  
A G A T C C C T T C A A A G C A A A C A C A G C A C 4  G A A A A T G A C T C A C C A  
Arp Ser Leu Cln  Ser Lyr His Ser Thr Glu 4rn  4 s p  Ser Pro 

ACA 4 A T G T 4 C A G C 4 A T A A  
Thr A m  Val Gln Gln 

~ a , . . . . , e l a t c t a a a ~ a a a a a a a a a a  1670 

FNTA (S) 

, 0 8 7  
4 G A T C C C T T C 4 4  A G C A A A  C A C A A C A C 4  TAA 
Arg Ser Leu Gln Ser Lyr His Asn  Thr 

Fig. 1. dentifcation of cytoplasmc nteractors of 
the TGF-p type I receptor (R4) wlth the use of a 
modfied yeast two-hybrd system (4, 5). (A) Sum- 
mary of the lhbrary screening. The entre cytoplas- 
mic domain of R4 was fused n-frame to the 
COOH-termlnus of the DNA binding domain of 
LexA to serve as the bait (5). A human fetal bran 
complementary DNA (cDNA) library in the yeast 
expression vector pJG4-5 was used In the lhbrary 
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fetal braln library (Fig. 1A).  Three groups of 
interactors were identified: human immu- 
nophilin FKBPl2 (9)  and two versions ot 
the human FNTA ( 1  0)  (Fig. 1B). The  latter 
ditter Lvithin the 10 COOH-terminal amino 
acids, the region least conserved among 
species ( 10) and critical tor farnesyltrans- 
ferase enzyme activity ( 1  1).  Regulation ot 
the expression ot these two variants may be 
important in controlling the activities ot 
the enzyme in vi\.o. 

The immunophilin FKBP12, previously 
isolated as a specific cytoplasmic interactor 
for another TGF-P tamily type I receptor 
(5), \vas recently tound to be a common 
interactor tor all type I receptors (12). The 
p2 1 """arnesyltransterase (FTase) is known 
to play a critical role in the activation ot 
both wild-type and oncogenic RAS by at- 
taching a 15-carbon farnesyl group to the 
cysteine near the COOH-termini of RAS, 
thus aiding in its membrane association 
(1 3) .  Farnesyltransferase consists ot oc and P 
subunits (1 0).  The oc subunit is also shared 
by geranylgeranyltransferase, which has a 
ditferent 6 subunit known to add a 20- 
carbon geranylgeranyl group to the y sub- 
unit of neural G proteina and three small G 
proteins (14). The P subunits ot both en- 
zymes are catalytic and recognize specitic 
substrates, although the function,ll role of 
the oc subunit, aside trom regulating and 
stabillzing the p subunits, is not clear ( I  I ). 

When tested in the yeast system (Fig. 
2A), the oc subunlt interacted with the 6 
subunit of tarnesyltransferase (FNTA) as ex- 
pected and also interacted specifically with 
the functional type I receptors ot TGF-P 
(R4) and activin (R2) among all tested type 
I receptors (6-8. 15). The R4-FNTA inter- 
action appeared not to be dependent on the 
kinase ~ct ivi ty  of R4 and was specitic tor 
type I receptors, because a kinase-deticient 
R4 [Fig: 2A, R4(K230R)] (16) was still ca- 
pable ot FNTA binding. Neither of the type 
I1 receptors of TGF-P and activin exhibited 
FNTA binding (1 7). The NH,-terminal 81 
amino acids ot the oc subunit, important tor 
the enzyme activity ot FTase in mammalian 
cells ( I  1 ), were also essential for R4 binding 
[Fig. 2A, R4(181)FNTA]. 

The  cytoplasmic region o t  R4 (R4C) 
contains the juxtarnernbrane ( J M ) ,  the 
serine-threonine kinase ( K ) ,  and the tail 
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