nal precursors and could be used to steer
neuronal precursors to specific locations of
the adult brain to replace neurons lost by
disease or injury.
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Role of Rho in Chemoattractant-Activated
Leukocyte Adhesion Through Integrins

Carlo Laudanna,* James J. Campbell, Eugene C. Butcher

Heterotrimeric guanine nucleotide binding protein (G protein)-linked receptors of the
chemoattractant subfamily can trigger adhesion through leukocyte integrins, and in this
role they are thought to regulate immune cell-cell interactions and trafficking. In lymphoid
cells transfected with formyl peptide or interleukin-8 receptors, agonist stimulation ac-
tivated nucleotide exchange on the small guanosine triphosphate-binding protein RhoA
in seconds. Inactivation of Rho by C3 transferase exoenzyme blocked agonist-induced
lymphocyte a4p1 adhesion to vascular cell adhesion molecule-1 and neutrophil p2
integrin adhesion to fibrinogen. These findings suggest that Rho participates in signaling
from chemoattractant receptors to trigger rapid adhesion in leukocytes.

Regulated leukocyte adhesion is critical to
immunity and inflammation and controls cel-
lular positioning, cell-cell interactions, and
immune cell responses. For example, rapid
triggering of integrin-mediated adhesion is re-
quired for the arrest of blood-borne lympho-
cytes and neutrophils at sites of leukocyte
recruitment from the blood. This extremely
rapid and robust adhesion, triggered within a
few seconds during leukocyte “rolling” along
endothelium, is initiated by pertussis toxin—
sensitive Go-linked receptors of the rhodop-
sin-related seven transmembrane family (1).
B2 integrin—mediated arrest of neutrophils,
for example, can be triggered through stimu-
lation of the formyl peptide, leukotriene B4,
or interleukin-8 (IL-8) chemoattractant re-
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ceptors in vivo (1). The regulation of integrin
adhesion through chemoattractant receptors
is likely important in cellular locomotion and
cell-cell interactions within tissues as well.
Intracellular signaling pathways that mediate
chemoattractant modulation of calcium flux,
neutrophil respiratory burst, and adenyl cy-
clase activity have been identified (2). How-
ever, signaling events that control rapid che-
moattractant activation of leukocyte integrin
adhesion have not been defined.

We used an in vitro model to study the
intracellular mechanisms that trigger lym-
phocyte adhesion through chemoattrac-
tant receptors. The mouse L1/2 B lym-
phoid cell line was transfected with the
human formyl peptide receptor (fPR) or
with the human IL-8 receptor type A (IL-
8RA). Agonist stimulation of these trans-
fectants triggers robust and rapid a4p1-
dependent adhesion to purified vascular
cell adhesion molecule—1 (VCAM-1) (3).

Because  chemoattractants  including
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formyl-Met-Leu-Phe (fMLP, a synthetic li-
gand for human fPR) stimulate a cascade of
second messengers, leading to activation of
protein kinase C (PKC) (4), we investigated
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Fig. 1. Inhibition of Rho, but not of PKC, blocks
chemoattractant-induced lymphocyte adhesion
to VCAM-1. Human fPR or human IL-8RA trans-
fectants were treated for 10 min at 37°C in RPMI
1640 with DMSO (C, control) or with the indicated
concentrations of calphostin C (LC Laboratories,
Woburn, Massachusetts) and then stimulated for
3 min with 100 nM fMLP (A), for 3 min with IL-8
(100 ng/m) (B), or for 10 min with PMA (100 ng/ml)
(C). Because of the reported light dependency
(15), both the treatment and the adhesion assay
with calphostin C were performed under cool-
white fluorescent light. Cells were treated with the
indicated amount of recombinant C3 transferase
(C3) (UBI, Lake Placid, New York) during culture
for 24 hours in RPMI 1640 containing 10% FBS.
Values are the mean counts of bound cells in 5 to
11 experiments; error bars are SDs (76). Back-
ground binding in the absence of agonist was
minimal (76) and was subtracted in this and sub-
sequent figures.
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Fig. 2. Effects of C3 transferase and calphostin C
on chemoattractant-induced polymorphonuclear
neutrophil adhesion to fibrinogen. Human blood
neutrophils were treated with calphostin C and
then stimulated with 100 nM fMLP, IL-8 (100 ng/
ml), or PMA (100 ng/ml) as in Fig. 1. The treatment
with C3 transferase was for 20 min at 37°C after
electropermeabilization (77).
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the role of PKC in triggered adhesion. Cal-
phostin C, a powerful and specific inhibitor of
diacylglycerol and Ca?*-dependent isoforms
of PKC (5), had no effect on fMLP-triggered
or IL-8-triggered adhesion to VCAM-1 (Fig.
1, A and B). In contrast, adhesion stimulated
by phorbol myristate acetate (PMA), a direct
PKC activator, was blocked efficiently by cal-
phostin C, as expected (Fig. 1C).

We next focused on the Rho subfamily of
small guanosine triphosphate (GTP)-bind-
ing proteins. These cytosolic proteins, which
are in an inactive state when bound to
guanosine diphosphate (GDP) and in an
active state when bound to GTP (6), regu-
late the assembly of focal adhesion complex-
es and actin stress fibers in fibroblasts (7)
and PMA-induced integrin-dependent ag-

gregation in lymphocytes (8); these processes
involve relatively slow responses that are
typically assayed over periods from 30 min to
several hours. The role of Rho proteins in
chemoattractant receptor signaling to inte-
grins in leukocytes has not been examined.
Transfectants were treated with recombi-
nant Clostridium botulinum C3 transferase,
which specifically inhibits Rho by adenosine
diphosphate ribosylation on Asp*! (9) in a
region believed (by analogy with Ras) to be
required for interaction with downstream
targets (10). Adhesion induced by chemoat-
tractants or by PMA stimulation was
blocked in a dose-dependent manner by C3
transferase (Fig. 1). Cellular viability, expres-
sion of a4B1 integrin, and the increase of
intracellular calcium triggered by fMLP or
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Fig. 3. Stimulated nucleotide exchange on RhoA in cells transfected with chemoattractant receptors. (A
through D) Agonist stimulation induces association of radioactive GDP with RhoA. Transfected cells were
labeled with [*2PJorthophosphate for 2 hours and were then treated with 100 nM fMLP (A and B) or IL-8
(100 ng/ml) (C and D) for the indicated times at 37°C. Resting cells were treated with DMSO or buffer.
Lysates were then immunoprecipitated with rabbit antibody to mouse immunoglobulin (-) or to RhoA (+).
The radioactivity bound to immunoprecipitated RhoA migrated with the GDP standard; GTP was unde-
tectable. (E and F) Recombinant RhoA (RhoA rec.) or RhoA peptide (pep.), but not Ras peptide,
prevented detection of GDP, which shows the specificity of the immunoprecipitation. In this experiment,
transfected cells were labeled with [3?Plorthophosphate for 20 hours and then stimulated with 100 nM
fMLP for 1 min at 37°C. (G) Equal amounts of total RhoA were precipitated from resting and agonist-
stimulated transfectants. Shown are protein immunoblots of anti-RhoA or control antibody (Ab) immu-
noprecipitates from lysates of transfectants stimulated with buffer (resting), 100 nM fMLP, or IL-8 (100
ng/ml) for 1 min at 37°C. (H) Agonist-dependent association of GTP-y-[3°S] with RhoA. Transfected cells
were loaded with GTP-y-[3°S] and then stimulated with agonist for 1 min at 37°C. The radioactivity bound
to immunoprecipitated RhoA migrated with the GTP-y-S standard; GDP was undetectable (78).
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IL-8 were not affected (11). C3 transferase
also blocked chemoattractant-stimulated
neutrophil adhesion (Fig. 2).

Small GTP-binding proteins can act as
triggered amplifiers of signal transduction
cascades. However, the effect of C3 trans-
ferase could also be explained if constitutive
Rho activity were required for maintenance
of one or more components of the stimulat-
ed signaling pathway. To assess whether
Rho was rapidly activated by chemoattrac-
tants, we analyzed accumulation of radioac-
tive nucleotides on RhoA, the predominant
Rho isoform in lymphocytes (8). Stimula-
tion of cells with fMLP caused an increase
in RhoA-bound radioactive GDP after 10
and 60 s; the maximum amount was about
seven times that in unstimulated cells (Fig.
3, A and B). Stimulation with IL-8 caused a
similar pattern of increase in RhoA-bound
radioactive GDP; the maximum amount
was 12 times that in unstimulated cells (Fig.
3, C and D). Recombinant unlabeled RhoA
and the RhoA peptide recognized by an
antibody to RhoA (anti-RhoA), but not a
control peptide from Ras, prevented detec-
tion of GDP present in the immunoprecipi-
tates (Fig. 3, E and F). The total amount of
RhoA immunoprecipitated was not influ-
enced by stimulation (Fig. 3G). The low
amount of radioactive GDP on RhoA from
unstimulated cells labeled for 2 hours with
[*?Plorthophosphate (Fig. 3B) suggests that
RhoA normally undergoes minimal nucle-
otide exchange. The amount of radioactive
GDP on RhoA in resting cells was greater
after prolonged incubation with [*2Plor-
thophosphate, but even after 20 hours of
labeling, stimulation with fMLP still in-
duced a ninefold increase in the amount of
radioactive GDP bound (Fig. 3, E and F).
RhoA-bound radioactive GTP was unde-
tectable. The absence of GTP in our immu-
noprecipitates could reflect a high gua-
nosine triphosphatase (GTPase) activity of
RhoA that led to rapid GTP hydrolysis in
vivo, consistent with the transient nature of
the induced adhesion [which normally lasts
no longer than 3 to 5 min (3)], or it could
reflect hydrolysis of GTP to GDP during
the processing of immunoprecipitates,
which takes hours (12).

To further analyze stimulated nucleotide
exchange, we loaded the cells with GTP-y-
[?°S], a hydrolysis-resistant radioactive ana-
log of GTP (13). Treatment of cells with
either IMLP or IL-8 stimulated binding of
GTP-vy-[**S] to RhoA (Fig. 3H). In con-
trast, RhoA did not bind GTP-y-[**S] in
nonstimulated cells; this finding further
demonstrated the low basal rate of nucleo-
tide exchange on RhoA in the absence of
stimulation. The low rate of spontaneous
RhoA nucleotide exchange may be impor-
tant in maintaining the normal low degree
of adhesiveness of unstimulated lympho-

cytes. The increase in radioactive GDP
content on RhoA and the association with
GTP-y-[*°S] after agonist treatment indi-
cate that chemoattractants activate RhoA
by increasing its guanine nucleotide ex-
change activity. Nucleotide exchange is ex-
tremely rapid, consistent with a role for
RhoA in adhesion triggering, which in L1/2
cells occurs within seconds (3).

Our results indicate a critical role for
Rho GTP-binding proteins in coupling of G
protein—linked chemoattractant receptors
to integrin-mediated adhesion in leuko-
cytes. In contrast to the adhesion-triggering
pathway defined here, chemoattractant-in-
duced calcium flux and the respiratory burst
are insensitive to C3 transferase (14),
which implies that independent regulation
of chemoattractant-stimulated adhesion
and effector functions may be possible. The
activity of Rho-related GTP-binding pro-
teins may be an important target for phar-
macological modulation of adhesive func-
tions of lymphocytes and other leukocytes
in pathologic inflammation.
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