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Catalytic Cleavage of the C-H and C-C Bonds of 
Alkanes by Surface Organometallic Chemistry: An 
EXAFS and IR Characterization of a Zr-H Catalyst 

a solid with remarkable catalytic activity for 
alkane activation. 

The catalytic cleavage of the C-H and 
C-C bonds of higher alkanes (paraffins) is 
also a subject of considerable importance. 
Paraffins are inert materials: Their transfor- 
matton to lower alkanes (by hydrogenoly- 
SIS) or to fuels (by dehpdrocyclization) usu- 
allp requtres heterogeneous catalysts work- 
ing at rather high temperatures (typically 
500°C). If such reactions could he carried 
out at a much lower temperature, it would 
be of great econom~cal advantage. Siintlar 
reactions may also ~ l a v  a role In the forma- 

A ,  

tion of natural gas ( 1 ) ;  it has recently been 
proposed that ethane and methane may he 
formed catalyttcally rather than by thermal 
decomposition of sedimentary organic mat- 
ter (1) .  This hypothesis could alter the way 
in which we view the generation and dis- 
tribution of oil and gas in the Earth. 

Judith Corker," Frederic Lefebvre, Christine Lecuyer, We have d~scovered that it IS posstble to 

Veronique Dufaud, Franqoise Quignard, Agnes Choplin, 
carry out the catalptic hydroge~lolysts of 
several simple alkanes (for example, pro- 

John Evans, Jean-Marie Basset* pane, butanes, and pentanes, w ~ t h  the ex- 

The catalytic cleavage under hydrogen of the C-H and C-C bonds of alkanes with 
conventional catalysts requires high temperatures. Room-temperature hydrogenolysis of 
simple alkanes is possible on a well-defined and well-characterized zirconium hydride 
supported on silica obtained by surface organometallic chemistry. The surface structure 
resulting from hydrogenolysis of (=SiO)Zr(Np), (Np, neopentyl) was determined from the 
extended x-ray absorption fine structure (EXAFS) and 'H and 2gSi solid-state nuclear 
magnetic resonance and infrared (IR) spectra. A mechanism for the formation of 
(=SiO),Zr-H and (=SiO),SiH, and the resulting low-temperature hydrogenolysis of alkanes 
is proposed. The mechanism may have implications forthe catalytic formation of methane, 
ethane, and lower alkanes in natural gas. 

T h e  grafting of organometallic compounds it has heen shown that surface organo- 
onto surfaces is the basis for the rapidly metallic fragments show substantially en- 
developing field of surface organometallic hanced reactivity and selectivity compared 
chemistry. The reactivity of organometallic to analogous molecular complexes or classi- 
fragments with surfaces is of special rele- cal heterogeneous catalysts. Uie report here 
vance to the understanding of the mecha- how the desien of a well-characterized zirco- 

ception of ethane) at mild temperatures by 
ineans of a catalvst consistine of a zirconi- 
um hydride supported on s l i ca  obtained 
by surface organoinetallic chemistry ( 2 -  
6).  For example, neopentane (Np-H) was 
converted into isohutane and methane by 
the catalpst Zr-H/SiO, in the presence of 
H, i l  atm) at 25°C after several hours. If - 
long reactlon t m e s  (several days) were 
used, the ftnal ~ r o d u c t s  were exclustvelv 
methane and ethane (an  alkane that IS not 
cleaved by the catalyst under hvdrogen). 
Classtcal heterogeneous or even hornoge- 
neous catalysts and enzymes normally do 
not achieve under hvdrogen such factle 
cleavage of the C-C i o n i s  of simple al- 
kanes Into ethane and metha~les (5). We 
report here the structure of the catalyst 
and its precursor at an atointc and molec- 
ular level. Herehv. we wtsh to  show how 

nisms in heterogeneous ca61ysis, which are nium hydrid'supported on silica can lead to this activity can i e  achieved. 
still ~ o o r l v  understood, and to the desien of " 

well-defined heterogeneous catalysts, which 
is also a challenge. The potential advanta- Table 1. The Zr K-edge EXAFS-derived structural parameters for the grafted Zr complexes on s~lica 
ges of catalysts based on surface organome- dehydroxylated at 500°C. For Zr K-edge spectra, AFAC = 0.89* and VPi = -2.0 eV+ values of the 
tallic fragments over soluble orgallometallic photoelectron energy at zero wave vector (E,) for samples (=SI-O)ZrNp, and (-S-O),ZrH were 13.5 and 

complexes are considerable: site isolation 20.7 eV, respectively. The Debye-Waller factor is given as 2m2, where u is the root-mean-square 
internuclear separation. The values given in parentheses represent the statistical errors generated n 

prevents undesirable side reactions (notably, EXCURVE; for true error estlmatlon, see (6). 
birnolecular decomposition pathways), and 
the problem of catalpst separation and recov- Coordination Distance 2p2 R factor 
ery is conveniently resolved. In some cases, Shell number R (4 (A2) ("/.I 
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~ ~ ~ ~ ~ ~ ~ " , * , ~ ~ ~ ~ ~ I i ~ ~ ~ ~ ~ ~ , " , " ~ , " ~ , " ~ r ~ , " , " , " , " , " r a  =AFAC, a nond~mensional factor describing the effects of multiple excitations resuning in the reduction of EXAFS 
amplitude, taken to be independent of the envronment around the absorbing atom. -;-VPI, constant Imaginary 
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Reaction of ZrNp4 with the silanol 
groups of a Degussa Aerosil silica pretreated 
at 500°C leads to the surface complex ( S -  
O)ZrNp3 ( I ) ,  which has been characterized 
previously by surface microanalysis and 13C 

cross-polarization magic-angle-spinning nu- 
clear magnetic resonance (CP-MAS NMR)  
and infrared (IR) spectroscopy (2) .  Treat- 
ment of 1 with H, at around 150°C leads to 
the formation of silica-supported zirconium 
hydride and silicon hydride ( 2 )  (3-5). W e  
have characterized these various surface 
species by extended x-ray absorption fine 
structure (EXAFS) and 'H  and 19Si solid- 
state NMR and IR spectroscopy. 

Analysis of the Zr K-edge EXAFS of 1 
(6)  (Fig. 1A and Table 1 )  gave a first 
cooordination sphere of one Ooatom at 1.96 
A and three C atoms at 2.22 A;  despite the 
similarity of 0 and C p h p e  shifts, attempts 
to  fit a n  0 sheil at 2.22 A together with a C 
shell at 1.96 A or to fit two shells of 0-C 
resulted in significantly increased refinement 
(R) factors and unacceptable Debye-Waller 
factors fqr the two shells. A n  additional shell 
at 3.42 A could be tentatively assigned to a 
shell of approximately three nonbonding 
neopentyl C atoms, although the quality of 
the data almost certainly limits the precision 
of this distant shell. The  Zr -0  distance is 
similar to  those observed in the  siloxyzir- 
conium copplexes (DME)ZrCl,(OSiPh,), 
[1.91(1) A]  (7)  and [(r15-CSHs)2Zr(e- 
OSiPh,O)], [1.974(2) and 1.983(2) A] 
(8) and is also comparable to  the Z r - 0  
bond lengths in the hydroxy complexes 
C p * , Z r ( O H ) ,  [ 1 . 9 7 5 ( 8 )  a n d  1.9!2(7) 
A] (9)  and Cp",Zr(OH)C1[1.950(2) A]  (9) ,  
suggesting essentially a single-bond charac- 

ter in the  surface complex (DME, dimeth- 
ylether; Ph,  phenyl; Cp", pentamethylcy- 
clopentadienyl; the  numbers in  parenthe- 
ses after the  lengths are the  standard errors 
in the l?st digits). T h e  Zr-C distance 
of 2.22 A is shorter than  those observed 
in (r15-CjHj)2Zr(CH2SiMe3); (Me,  meth- 
yl) [2.278(4) and 2.281(4) A]  ( I ? ) ,  (q5-  
C5H5),Zr (CH,CMe,), [2.294(8) A]  (101, 
and <r (CH2Ph)4  (2.23, 2.26, 2.28, and 
2.29 A )  (1 1 )  but is still within the  expect- 
ed range for a Zr-C bond (1 2) .  Taking the 
EXAFS Zr-C and C - C  distances as 2.22 
and 1.54 A, respectively, the  Zr-C-C angle 
is calculated to  be 130°, with a n  estimated 
error of 5' to  10'; this compares very 
favorably with the  Zr-C-X angles in iq5- 
CjHj)2Zr(CH,XMe3)2 (9)  of 133.8(2)" 
and 135.2(2)" (X = Si )  and 142.7(5)" (X 
= C ) .  T h e  EXAFS results thus strongly 
support the  presence of discrete [Si l -0-  
ZrNp, surface species. 

Treatment of (=Si-O)ZrNp, with H 2  at 
150°C resulted in a significant change in  
the  Zr K-edge EXAFS (Fig. 1B). This  is in 
agreement with previous in situ IR and 
N M R  experiments, which indicated the  
formation of a zirconium hydride species 
( 2 )  [zirconium-hydride stretching absor- 
bance v(Zr-H) band at 1635 cm-'  and 'H 

Fig. 1. The (top) Zr K-edge k3-weighted EXAFS and (bottom) Fourier transform, phase-shift corrected for 
oxygen, of (A) (=Si-0)-ZrNp, and (6) (=Si-O),-ZrH from experiment (solid lines) and spherical wave theory 
(dotted lines). 

M A S  N M R  peak at chemical shift 6 = 10 
parts per million (ppm) ( 3 ,  13)]. By reac- 
t ion with various halogenated compounds 
(such as CH31 and C2HjBr) ,  it was found 
that  there is a n  average of one hydride 
ligand per Zr (3) .  Analysis of the  EXAFS 
data revealed a first coordination sphere of 
three 0 atoms at 1.94 A, consistent with 
single-bond formation. However, the  R 
factor could be decrzased by 15% if a n  
additional 0 at 2.61 A was included in the  
EXAFS fit, suggesting a possible longer 
range Zr interaction with a fourth surface 
0 .  These results (EXAFS, IR, NMR,  and 
chemical reactivity) allow us to  propose 
the  formulation (Si-O),Zr-H for the  sup- 
ported zirconium hydride species. W e  sug- 
gest a plausible mechanism for its forma- 
tion (Scheme l )  based o n  the  observation 
of two IR bands at 2253 and 2195 cm- ' ,  
which were attributed to  the  presence of 
surface silanes. In  addition, the  IR data 
indicate that these surface silanes corre- 
spond to  a silicon dihydride species (1 4 ) ,  
T h e  formation of =SiH, means that two 
S i -0  bonds of the  same S i  atom have been 
broken. T h e  presence of surface silanes has 
also been indicated by solid-state N M R  
(13) .  

T h e  simultaneous formation of =SiH2 
and (=Si-O),Zr-H species from the (=Si- 
O)ZrNp3 complex demonstrates that the 
hydrogenolysis of a sterically hindered 
(=Si-O)ZrNp, surface fragment results in 
the opening of the very strong Si-0-Si  
bonds. T o  understand this phenomenon, we 
must consider a system such as the one 
depicted in Scheme 1: T h e  postulated ZrH3 
intermediate resulting from the hydro- 
genolysis of the three neopentyl groups of 
(=Si-O)ZrNp3 is bonded to a S i 0 4  tetra- 
hedron. W e  assume that two Si-0-Si  bridg- 
es of this tetrahedron will be broken, with 
coordination of the 0 to the Zr and of the 
hydride to  the Si,  in agreement with the 
above results. Zirconium is more oxophilic 
than S i  and has a similar bonding enthalpy 
for the M-H bond ( M  = Zr or Si); there- 
fore, this is a realistic hypothesis. T h e  dis- 
tance from the 0 atoTs to  the Zr atom is 
not very large (-2.4 A by molecular me- 
chanics), and so the reaction (Scheme 1)  

2 

Scheme 1. The Zr, 0 -1 ,  Si-1, 0-4,  and Si-2 at- 
oms are shown in the same plane. The atoms 0 -2  
and 0 - 3  are symmetrical with respect to this 
plane. 
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should proceed relatively easily. I n  this 
model, the  =SiH2 entity is "protected" by 
the  zirconium hydride, probably inducing 
the  long relaxation rates experimentally ob- 
served in 29Si N M R  (13).  Also, the  0 - 4  
aJom is not very far from the  Zr atom (-2.9 
A by molecular mechanics without optimi- 
zation of the  structure); it is probably this 0 
that lea+ to the  EXAFS coordination shell 
at 2.61 A. This distance could result from a 
slight distortion of the  S i H 2 0 2  tetrahedron 
(IR data indicate that the  H-Si-H angle is 
-95'; the  0 - S i - 0  angle probably increases 
compared with its normal value of 109"). 

These results show that reaction of the 
well-defined (Si-O)ZrNp3 complex (where 
the Zr atom is tetracoordinated) leads to the 
formation of a zirconium monohydride spe- 
cies, (%-O),-ZrH, and a silicon dihydride 
species, =SiH,. The  resulting structure is ex- 
ceptional and can be interpreted to explain 
the catalytic process of hydrogenolysis. In this 
structure, the zirconium hydride has an  eight- 
electron configuraiion (10 if one considers 
the 0 - 4  at 2.64 A). Molecular ZrlIV) hu- ~ , ,  
drides are generally stabilized by two cyclo- 
pentadienyl ligands. They are thus 16-elec- 
tron species and therefore less electrophilic 
than 2. T h e  immobilization of the hydride on 
a surface apparently prevents dimeriiation, 
which would normally occur for truly molec- 
ular species. 

W e  are proposing a mechanism by 
which the  catalyst operates o n  a "supramo- 
lecular" basis, that is, by including both the  
surface structure of the  catalyst and the  
alkanes. T h e  mechanism is based o n  pre- 
liminary results concerning the elementarv 
steps of C-H bond activation with such a 
catalyst ( 3 ,  4 ) ,  as well as some elementary 
steps of P-alkyl transfer that are known to 
occur when a n  alkyl group or chain is 
linked to a n  earlv transition metal 115). In  ~, 

the particular case of neopentane hydro- 
genolysis, the  mechanism involves the for- 
mation of a Zr-CH,C(CH,), species by 
o-bond metathesis, followed by P-methyl 
transfer to give isobutylene and a Zr-CH3 
species. T h e  latter is converted to methane 
by H,, with regeneration of the  Zr-H cata- 
lyst. 

T h e  primary product isobutylene was 
not  identified, probably because the  catalyst 
rapidly converted it to isobutane under H 2' 
Isobutane undergoes further hydrogenolysis 
to propane and methane; propane is hy- 
drogenolyzed to  ethane and methane. 
Ethane is not cleaved, presumably because 
the ethylzirconium intermediate lacks a 
P-methyl group. 

This mechanism, which occurs a t  room 
temperature, is quite similar to that de- 
scribed by Mango et al. ( I ) ,  which was 
proposed to  explain the  methane formation 
in natural gas. Our  results support strongly 
the  assumption that  methane in natural gas 
could be the result of a catalytic process 
under mild conditions; high temperature 
may no t  be a requirement for the  forma- 
t ion of natural gas. It is quite possible that  
under hydrogen [its average concentration 
in  natural gas is -700 ppm and  in some 
cases can  reach 50% ( I ) ] ,  sedimentary 
rocks containing transition metals such as 
Zr or T i  may contain a small amount of 
surface hydride that  is able to cleave cat- 
alytically the  C-H and C-C bonds of al- 
kanes or alkenes. 
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Lamellar Biogels: Fluid-Membrane-Based 
Hydrogels Containing Polymer Lipids 

Heidi E. Warriner, Stefan H. J. Idziak, Nelle L. Slack, 
Patrick Davidson,* Cyrus R. Safinyat 

A class of lamellar biological hydrogels comprised of fluid membranes of lipids and 
surfactants with small amounts of low molecular weight poly(ethy1ene glycol)-derived 
polymer lipids (PEG-lipids) were studied by x-ray diffraction, polarized light microscopy, 
and rheometry. In contrast to isotropic hydrogels of polymer networks, these membrane- 
based birefringent liquid crystalline biogels, labeled L-,,, form the gel phase when water 
is added to the liquid-like lamellar L, phase, which reenters a liquid-like mixed phase upon 
further dilution. Furthermore, gels with larger water content require less PEG-lipid to 
remain stable. Although concentrated (-50 weight percent) mixtures of free PEG (mo- 
lecular weight, 5000) and water do not gel, gelation does occur in mixtures containing as 
little as 0.5 weight percent PEG-lipid. A defining signature of the La,, regime as it sets in 
from the fluid lamellar La phase is the proliferation of layer-dislocation-type defects, which 
are stabilized by the segregation of PEG-lipids to the defect regions of high membrane 
curvature that connect the membranes. 

G e l s  are viscoelastic materials that normal- 
ly consist of a solid component dispersed in 
a liquid, water in the case of hydrogels. 
Polymer gels (I)-either natural, such as 
gelatin, or synthetic-contain a polymer 
network (2) ,  which serves as the solid com- 
ponent and can resist shear. For many bio- 
logical applications, gels based o n  high mo- 
lecular weight poly(ethy1ene oxide) [PEO, 
(OCH,CH,),,I (3) have been used because 
of their low immunogenicity: the material 
can  be used to coat more immunogenic 
tissues ( I  ) and materials (4). 

Recent studies show that attaching low 
molecular weight ( n  < 150) PEO (referred 
to as PEG) to a biological macromolecule 
15-81 can dramaticallv increase blood cir- 
culation times. Both ieptides and proteins 
can be protected by covalently attached 
PEG for in vivo administration of therapeu- 
tic enzymes (5) ,  and so-called "Stealth" 
liposomes (6-8) consisting of closed bilayer 
shells of phospholipids covered with PEG- 
lipids hydrophobically anchored to  the  
membrane can be used as a drug carrier 
system. T h e  inhibition of the  body's im- 
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mune response to these PEG-coated lipo- 
somes has been attributed (8 )  to  a polymer- 
brush-type steric repulsion (9 )  that has 
been measured between PEG-coated mem- 
branes incorworated both in the  chain-fro- 
Zen membrane phase o n  a solid substrate 
(10) and in  the  chain-melted fluid phase in 
multilamellar L, systems (1 1) .  In these sys- 
tems, the  emphasis was in the  regime where 
the  intermembrane distance d I R,, where 
R, is the PEG radius of gyration. 

In  exploring the  interactions between 
PEG-lipid and the  chain-melted fluid phase 
in  multilarnellar L, systems, we have dis- 
covered a lamellar hydrogel phase, labeled 
L,,,, in the  high water regime of the phase 
diaeram. This eel incorvorates n o  solid - - 
phase component. Polarized light microsco- 
py has revealed that this phase is not  iso- 
trovic and shows liauid crvstal-like birefrin- 
geI;ce. Studies w i t i  x-ra): diffraction show 
that the  maximum interlayer spacings d >> 
R, for this phase (Fig. 1A) ;  a model for the  
structure of this phase suggests that PEG- 
h i d  stabilizes laver dislocation defects in 
regions of high membrane curvature (Fig. 
1B). Unlike Lp, gels that incorporate solid 
membranes (12),  a bioactive gel based o n  
fluid membranes could incorporate mem- 
brane-embedded vroteins that are bioloei- - 
tally active, thus providing a way in which 
to deliver such molecules in a stable gel. A n  
unusual feature of these gels is that they can 
be formed from a liquid-like flowing L, 

phase by adding water and also dissolved 
back to a flowing two-phase liquid by fur- 
ther addition of water. 

T h e  L,,, phase is composed of mem- 
branes of DMPC (dimyristoyl phosphatidyl 
choline), the co-surfactant pentanol, and 
small amounts of the polymer-lipid PEG- 
DMPE {1,2-diacyl-sn-glycero-3-phosphoeth- 
anolamine-N-[poly(ethylene glycol)]} sepa- 
rated by water. T h e  PEG-lipid is hydropho- 
bically anchored but free to diffuse within 
the fluid membrane (Fig. 1A).  W e  investi- 
gated two different molecular weights of 
PEG, 2053 g/mol (PEG2000; n = 45 mono- 
mers) and 5181 g/mol (PEG5000; n = 113) 
(Avanti  Polar Lipids, Alabaster, Alabama). 
T h e  most dilute gels contained 90.0 weight 
% water, 6.0 weight % lipid, 3.46 weight % 
pentanol, and 0.54 weight % PEG5000- 
DMPE (Fig. 2). In  contrast, the convention- 
al solid-membrane Lp. gels incorporate a t  
most 40 weight % water (12). In  principle, 
addition of PEG-lipid to even more dilute L- 
phases 1-99 weight % (13)] would result in  
extremely dilute lamellar gels. 

PEG-DMPE 

DMPC 

m 

Fig. 1. (A) Schematic of two undulating fluid mem- 
branes [composed of DMPC and co-surfactant 
pentanol (single chain)] with PEG-lipid hydrophobi- 
cally anchored but freely diffusing within the mem- 
brane. (B) Schematic of two paths that would form 
defects, with the laterally phase separated PEG- 
lipid residing in, and stabilizing, the regions of high 
curvature. The interlayer spacing is d = 6 + d,,,,,, 
where 6 is the membrane thickness and d,,,,, is 
the separation between layers containing water 
and the hydrophilic PEG component. 
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