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JVlature mast cells reside in mucosal and 
connective-tissues where they can act as key 
mediators in immunoglobulin E (IgE)-de­
pendent allergic reactions. In addition, 
through the release of cytokines as well as 
proteases and other mediators, mast cells 
can participate in a wide array of immuno­
logical and inflammatory responses in 
which they function in the recruitment of 
leukocytes into sites of inflammation and in 
the local regulation of vascular or epithelial 
permeability (1). Mast cells originate from 
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4A were run on the same gel. For the assays shown 
in Fig. 4B, the chemiluminescent substrate Lurmi-
phos 530 (Boehringer-Mannheim) was used. Ex­
posed x-ray films were analyzed with a Molecular 
Dynamics (Sunnyvale, CA) laser densitometer, cor­
recting for variations in background and normaliz­
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hematopoietic stem cells (HSCs) (2), and 
in vitro assays of colony formation indicate 
that mast cell precursor activity occurs at 
low frequency in the bone marrow, periph­
eral blood, and mesenteric lymph nodes of 
murine rodents (3, 4). It has been proposed 
that mast cell precursors leave the bone 
marrow, migrate in the peripheral blood, 
and invade mucosal and connective tissues 
where they undergo differentiation into 
morphologically characteristic mature mast 
cells. However, a mast cell-committed pre­
cursor cell, that is, a cell type distinguished 
by morphology and developmental poten­
tial from a multipotent HSC, has not been 
purified from bone marrow or blood (3, 4). 
Here, we report the identification of a cell 
population purified from murine fetal blood 
that satisfies the criteria of a mast cell-
committed precursor at a stage before tissue 

Identification of a Committed Precursor 
for the Mast Cell Lineage 

Hans-Reimer Rodewald,* Mark Dessing, Ann M. Dvorak, 
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Mast cells originate from hematopoietic stem cells, but the mast cell-committed precursor 
has not been identified. In the study presented here, a cell population in murine fetal blood 
that fulfills the criteria of progenitor mastocytes was identified. It is defined by the 
phenotype Thy-1loc-Kithi, contains cytoplasmic granules, and expresses RNAs encoding 
mast cell-associated proteases but lacks expression of the high-affinity immunoglobulin 
E receptor. Thy-1loc-Kithi cells generated functionally competent mast cells at high fre­
quencies in vitro but lacked developmental potential for other hematopoietic lineages. 
When transferred intraperitoneal^, this population reconstituted the peritoneal mast cell 
compartment of genetically mast cell-deficient W/Wv mice to wild-type levels. 
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invasion. This progenitor mastocyte (pro- 
mastocyte) is both morphologically and 
functionally distinct from HSCs. 

The leukocyte fraction in fetal blood 
(FB) from day 15.5 of gestation contains 
several distinct cell populations that can be 
resolved on the basis of expression of Thy-1 
and the receptor tyrosine kinase c-Kit (Fig. 
1A) (5). Fetal blood Thy-1-c-Kit+ cells 
(Fig. 1B) and FB Thy-l+c-Kit'" cells were 
recently defined as populations containing 
multipotent hematopoietic stem cells and 
pro-thymocytes, respectively (5, 6). Begin- 
ning on day 14.5 of gestation, a third pop- 
ulation, defined by the phenotype Thy-1'"c- 
Kithi, can also be isolated from FB (Fig. 1C). 
Both FB Thy-1-c-Kitf and FB Thy-ll"c- 
Kithi cell types displayed large nucleus-to- 
cytoplasm ratios and strongly (Thy-1-c- 
Kit+) or weakly (Thy-ll"c-Kithi) basophilic 
cytoplasm, features that are consistent with 
those of immature hematopoietic precur- 
sors. However, FB Thy-1%-Kith' cells (Fig. 
lE), but not FB Thy-1-c-Kit+ cells (Fig. 
ID), exhibited variable numbers of promi- 
nent basophilic cytoplasmic granules. 

To assess their hematopoietic potential, 
we cultured FB Thy-1-c-Kit+ and FB Thy- 
ll"c-Kithi cells with various hematopoietic 
cytokines in methylcellulose assays in vitro 
(7). Fetal blood Thy-1-c-Kit+ cells formed 
colonies in response to interleukin-3 (IL-3) 
alone, a response augmented by stem cell 
factor (SCF). In contrast, FB Thy-ll"c-Kithi 
cells were unresponsive to either IL-3 or 
SCF alone, but did generate colonies in 
IL-3 and SCF at frequencies higher than 
those of FB Thy-1 -c-Kit+ cells (Fig. 2). In 

numerous assays (8), FB Thy-1 -c-Kitf 
cells, but not FB Thy-ll"c-Kithi cells, 
proved capable of multilineage develop- 
ment. Fetal blood Thy-ll"c-Kithi cells, but 
not FB Thy-1-c-Kitf cells, failed to gener- 
ate colonies in response to macrophage- 
colony-stimulating factor (M-CSF), granu- 
locyte-macrophage (GM)-CSF, and granu- 
locyte (G)-CSF. The expression of RNA 
encoding pmaj''r globin, which is indicative 
of erythroid lineage commitment, was in- 
ducible with IL-3, SCF, and erythropoietin 
in FB Thy-1-c-Kit+ but not in FB Thy- 
1'"c-Kithi cells (8). As was in agreement 
with these in vitro findings, in vivo my- 
eloid-erythroid precursor activity, as re- 
vealed by day 8 and day 12 spleen colony- 
forming units (9), was contained in FB Thy- 
1-c-Kit+ cells but not in up to 5 X lo3 FB 
Thy-1%-Kithi cells (the highest analyzed 
cell concentration). Pre-B cell colonies 
arose from FB Thy-1-c-Kit+ cells, but not 
from FB Thy-1%-Kithi cells, when both 
types of progenitors were analyzed in a sen- 
sitive culture system supporting B cell de- 
velopment on stromal cells (PA-6) with 
IL-7 ( 10). Finally, FB Thy-ll"c-Kithi cells, 
but not FB Thy-1-c-Kit+ cells, lacked T 
cell precursor potential on adoptive intra- 
thymic transfer (6). Thus, FB Thy-ll"c-Kithi 
cells, but not FB Thy-1-c-Kit+ cells, lack 
developmental potential for macrophages, 
granulocytes, erythrocytes, and B and T 
lymphocytes. 

Interleukin-3 and SCF can support mast 
cell colony formation from bone marrow 
cells (3 ,  4,  1 1 ) and from mature mast cells 
in vitro (4, 1 1,  12). Ex vivo isolated FB 
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Fig.l.PhenotypeandmoqkQyof 
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1-c-Kit+ (0) and FB Thy-1 bc-KiP (E) 
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Thy-1'"c-Kithi cells contained cytoplasmic 
granules that stained weakly with toluidine 
blue but not with berberine sulfate or safra- 
nin, dyes that stain granules of mature con- 
nective tissue-type mast cells (CTMCs) 
(13). After culture in IL-3 and SCF (8), FB 
Thy-1%-Kithi cells displayed an immature 
mast cell morphology with small nucleus- 
to-cytoplasm ratios and more abundant 
toluidine blue-positive granules. When ob- 
served by transmission electron microscopy 
(14-18), freshly sorted FB Thy-1'"c-Kithi 
cells exhibited criteria characteristic of very 
immature mast cells'(Fig. 3A) and differed 
from immature basophils according to the 
ultrastructural characteristics of their nu- 
clei, immature cytoplasmic granules, Golgi 
apparatus, and endoplasmic reticulum (15, 
17, 18). When FB Thy-ll"c-Kithi cells were 
cultured for 13 days with IL-3 and SCF, 
ultrastructural examination revealed a more 
abundant cytoplasm and more numerous 
granules, which are indicative of further 
maturation (Fig. 3B). Ultrastructural anal- 
ysis of sorted FB Thy-1 -c-Kit+ and FB Thy- 
l+c-Kit'" cells (Fig. I), representing multi- 
potent and pro-thymocyte populations (5), 
respectively, revealed no evidence for cyto- 
plasmic granule development. 

Mast cells are frequently characterized 
by expression of their specific secretory 
granule proteases ( 19). Therefore, FB Thy- 
1-c-Kit+ and FB Thy-ll"c-Kithi cells were 
analyzed by semiquantitative reverse tran- 
scriptase-polymerase chain reaction (RT- 
PCR) for expression of RNAs encoding 

IL-3 SCF IL-3+ SCF 

Fig. 2. In vitro colony formation of FB-derived 
Thy-1 -c-Kit+ and Thy-1 1°c-Kithi populations. Pu- 
rified Thy-llOc-Kithi and Thy-1 -c-Kit+ cells (isolat- 
ed as in Fig. 1) were plated into methylcellulose 
medium in the presence of various cytokines, and 
colony-forming cells were determined after 10 
days in vitro (7, 8). Data are representative of at 
least three independent experiments per analyzed 
condition. 
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three mast cell-specific proteases (MC- 
CPA, MMCP-2, and MMCP-4) (1 9-21 ). 
All three were expressed in ex vivo isolated 
FB Thy-ll"c-Kithi cells (in the quantitative 
order MC-CPA > MMCP-4 > MMCP-2), 
but were expressed in FB Thy-1-c-Kit+ 
cells only after culture under conditions 
that promote mast cell development (IL-3 
plus SCF). 

Because mature mast cells express high- 
affinity IgE receptors (FceRI) (22), we an- 
alyzed FB Thy-1 -c-Kit+ and FB Thy-1%- 
Kithi cells for expression of RNA encoding 
the FceRI a chain (23). FceRIa RNA ex- 
pression was undetectable in both ex vivo 
purified populations (Fig. 3C). However, 
after culture in IL-3 and SCF (8), FceRIa 
RNA was expressed in progeny from both 
FB Thy-1-c-Kit+ and FB Thy-1%-Kith' 
cells (Fig. 3C). FceRIa RNA was -10 to 
100 times more abundant in progeny de- 
rived from FB Thy-1%-Kithi cells as com- 
pared with progeny from FB Thy-1-c-Kit+ 
cells, which suggests a greater frequency or 
maturity of mast cell lineage precursors in 
the FB Thy-1%-Kithi population. Expres- 
sion of FceRIa RNA paralleled the capacity 
to bind IgE to the cell surface, as deter- 
mined by flow cytometry. Fetal blood Thy- 
ll"c-Kithi cell-derived mast cells were func- 
tionally competent, as shown by their ca- 
pacity to incorporate serotonin and to re- 
lease this mediator (24) after antigen [2,4- 
dinitrophenyl (DNP)-carrier] or antibody 
[antibody to IgE (anti-IgE)] stimulation of 
IgE antibody to DNP (anti-DNP-1gE)-oc- 
cupied FceRI (Fig. 3D). 

To assess their developmental potential 
for the mast cell lineage in vivo, we trans- 
ferred FB Thy-1%-Kithi or FB Thy-l-c- 
Kit+ cells into mast cell-deficient W/W" 
mice (25, 26). Typical CTMCs in the peri- 
toneal cavity stain strongly with berberine 
sulfate (Fig. 4, A and B) and safranin (Fig. 
4C) (1 3 ,  26). W/W" mice deficient in c-Kit 
completely lack CTMCs in the peritoneal 
cavity (Fig. 4G) (25, 26). O n  intraperito- 
neal transfer of only 5 x lo3 FB Thy-1%- 
Kithi progenitors, the CTMC compartment 
in the peritoneal cavity of W/W" mice was 
reconstituted to wild-type levels (Fig. 4D), 
and the cytoplasmic granules of the recon- 
stituted mast cells showed the typical 
CTMC staining pattern (Fig. 4, E and F). 
Intravenous, but not intraperitoneal, injec- 
tion of multipotent FB Thy-1-c-Kit+ cells 
into W/W" mice also reconstituted the 
CTMC compartment (Fig. 4H). However, 
as verified by donor-globin analysis, intra- 
venous injection of FB Thy-1-c-Kit+ cells 
also produced HSC 'engraftment in W/W" 
recipients. No HSC engraftment' was de- 
tectable after intravenous injection of FB 
Thy-1%-Kithi cells into W/W" recipients. 

Mast cell precursor activity has been 
demonstrated in the murine day 9.5 embry- 
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Fig. 3. Fetal blood Thy-1 c Kit" cells glve rlse to 
funct~onal mast cells ~n v~tro Purlfled FB precursors Stlmulatton 1 2 3 4 5 6 

IgE + + + - - -  
Isolated ex v~vo (A and C) or cultured In methylcellu- anti-lgE - + - + - -  
lose med~um wlth IL-3 and SCF (8) (B to D) were DNP-HSA - - + - + -  
exam~ned by transrn~ss~on electron m~croscopy (18) lonornyc~n - - - - - + 
[(A) and (B)] analyzed by sem~quant~tatrve RT-PCR for 
expression of RNAs encodlng FceRla [(C), top panel] or act~n [(C), bottom panel] (23, 33), or analyzed for 
3H-seroton~n release after strrnulat~on through FceRla (24, 36) (D) The representat~ve ex v~vo Isolated 
mast cell precursor (A) has a lobular nucleus (N) and several Immature cytoplasm~c granules (arrows) 
contaln~ng mlxtures of vesdes, electron-dense progranules, lightly dense matr~x mater~al, and electron- 
lucent areas In (B), the cultured FB Thy-llOc-Kth mast cell IS also Immature by morpholog~cal crltena 
However, compared w~th the cell In (A), the cytoplasm IS more abundant and the Immature granules 
(arrows) are more numerous Scale bars In (A) and (B), 1 prn In (D), 3H-seroton~n-labeled FB Thy-I'Oc- 
Kith' cells cultured for 14 days In 11-3 and SCF (8) were Incubated w~th monoclonal mouse anti-DNP-lgE 
(lanes 1 through 3) or medlum alone (lanes 4 through 6) and subsequently st~mulated w~th medlum alone 
(lane I ) ,  wlth anti-lgE (lanes 2 and 4) or DNP-HSA (lanes 3 and 5), or wrth lonomycln (36) Release In lanes 
1 through 6 corresponds to -2,56,41.1.1. and 7296, respectively, of total release after lys~s 1nTr1ton X-100 
(0 1 Oh) (lOOoh release = 1 19 x lo5 cpm) Data are representat~ve of three Independent expenments 

onic yolk sac (27), in adult bone marrow 
(2), and in adult ~ e r i ~ h e r a l  blood (3, 28), 
as well as in mesenteric lymph nodes of 
Nippostrongylus brasiliensis-infected mice 
(4, 29). Nevertheless, a mast cell-commit- 
ted precursor cell, functionally or morpho- 
logically distinct from HSCs or from other 
multipotent progenitor cells, had not been 
purified from bone marrow or blood (3, 4). 
The purification and initial characteriza- 
tion of FB Thy-1%-Kithi cells indicate that 
this population represents the earliest pre- 
cursors committed to the mast cell lineage 
to be identified in ontogeny. Our data 

strongly suggest that: (i) Commitment into 
the mast cell lineage and expression of mast 
cell-associated proteases can precede tissue 
immigration. (ii) Circulating pro-masto- 
cytes are indeed granulated cells that are 
morphologically distinct from multipotent 
stem cells. (iii) Formation of cytoplasmic 
granules can   recede expression of FceRI in 
vivo [as in certain immature mast cell pop- 
ulations in vitro (30)]. (iv) Circulating pro- 
mastocytes are selective in their cytokine 
requirement (IL-3 plus SCF) for further ex- 
pansion and differentiation in vitro. 
Whether the early appearance of mast cell- 
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Fig. 4 . Fetal blood Thy-
1 loc-Kithi cells reconsti­
tute the peritoneal mast 
cell compartment to wild-
type levels in mast cel l -
deficient W/Wy mice. Fe­
tal blood Thy-1 loc-Kithi 

cells or Thy-1 ~c-Kit+ 

cells purified by fluores­
cence activated cell sort­
ing were injected (5 x 
103 cells per mouse) in­
travenously (i.v.) or intra­
peritoneal^ (i.p.) into 250 
rad-irradiated (i.v. trans­
fer) or unirradiated (i.p. 
transfer) mast cel l-defi­
cient W/Wy recipient 
mice (25, 26, 37). Three 
months after cell trans­
fers, peritoneal exudate 
cells (PECs) were har­
vested from wild-type 
C57B176 mice (A 
through C) or from W/Wy 

mice that were injected 
i.p. with FBThy-1 l oc-Kith i 

cells (D through F) or un-
injected (G) or injected 

i.v. with FB Thy-1 ~c-Kit+ cells (H). PECs (2 x 105) were cytospun onto glass slides and stained with 
berberine sulfate [(A), (B), (D), (E), (G), and (H)] or alcian blue-safranin [(C) and (F)] (13, 26). Cells with 
weakly berberine-positive nuclei are lymphocytes and monocytes, and large cells with strong cyto­
plasmic staining are peritoneal CTMCs, which are completely absent in W/Wy mice [compare (A) and 
(G)] (25). Higher magnification reveals granular staining with berberine [(B) and (E)] and safranin [(C) and 
(F)]. The recipient mouse displaying CTMC reconstitution after i.v. transfer of multipotent FB Thy-1 ~c-
Kit+ cells (H) also showed HSC engraftment by donor-globin analysis. Identical results were obtained 
in three independent experiments. Scale bars in (A), (D), (G), and (H), 100 |xm; in (B), (C), (E) and (F), 
17 |xm. 

associated proteases plays any role in tissue 
invasion from the blood remains to be as­
sessed. Also, the origin of this pro-masto-
cyte population in fetal development has 
yet to be identified; we could not identify a 
corresponding population in fetal liver in 
mid or late gestation. The number of FB 
Thy-lloc-Kithi cells in the blood (-1/40 of 
the CD45+ leukocyte fraction on day 15.5) 
declines from day 15.5 up to birth. 

The identification of this most immature 
mast cell precursor may help to elucidate 
the earliest molecular events underlying 
mast cell lineage commitment and differen­
tiation into mature mast cells. Our findings 
may also prove useful for the further classi­
fication of mast cell malignancies; indeed, 
an immature human mast cell line derived 
from a patient with mast cell leukemia ex­
presses a mast cell granule-associated pro­
tease but not FceRI (31). 
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Activation of BTK by a Phosphorylation 
Mechanism lni tiated by SRC Family Kinases 

David J. Rawlings," Andrew M. Scharenberg," Hyunsun Park, 
Matthew I. Wahl, Siqi Lin, Roberta M. Kato, 

Anne-Catherine Fluckiger, Owen N. Witte, Jean-Pierre Kinett 

Bruton's tyrosine kinase (BTK) is pivotal in B cell activation and development through its 
participation in the signaling pathways of multiple hematopoietic receptors. The mech- 
anisms controlling BTK activation were studied here by examination of the biochemical 
consequences of an interaction between BTK and SRC family kinases. This interaction 
of BTK with SRC kinases transphosphorylated BTK on tyrosine at residue 551, which led 
to BTK activation. BTK then autophosphorylated at a second site. The same two sites were 
phosphorylated upon B cell antigen receptor cross-linking. The activated BTK was pre- 
dominantly membrane-associated, which suggests that BTK integrates distinct receptor 
signals resulting in SRC kinase activation and BTK membrane targeting. 

BTK is a member of the RTKITEC family 
of nonreceptor tyrosine kinases (NRTKs) 
(1-3). These proteins are distinct among 
NRTKs in containing conserved NH7-ter- 
lninal regions consisting of a pleckstrin 
homology (PH)  domain and a proline-rich 
sequence, in addition to their conserved 
S R C  ho~nology 2 (SH2), SH? ,  and kinase 
domains. Deficient function of BTK is 

responsible for both human  X-linked 
agammaglol>ulinernia (XLA) and m ~ l r i n e  
X-linked R cell immunodeficiency (XID) 
( 1 ,  4-6).  T h e  sequelae of iieflcient RTK 
function suggest that  a BTK-dependent 
signal is required for the  expansion, func- 
tional maturation, or hot11 of B cell pro- 
genitors (pro-B) (7). A diverse group of 
receptors is capahle of a c t i ~ ~ a t i n g  BTK (8- 
13).  Kno~vledee of h o ~ v  these recentors 
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vitro interaction studies ( 12).  In an  effort to 

'These authors contrbuted equally to t hs  work. synthesiie these data, we studied the  con- 
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\Ve used vaccinia-driven expression of 
BTK, LYN, or both in a B cell line trans- 
formed 1~1th Epstein-Rarr virus (ERV) and 
deficient in BTK inRNA and protein pro- 
d ~ ~ c t i o n  (Fig. 1 A ) .  Coexpression of LYN 
and BTK increased tlhe tyrosine phospho- 
rylation of BTK five times relative to that 
present after expression of BTK alone (Fig. 
1A) .  These results were comparable to the  5 
to 10 times increase in BTK tyrosine phos- 
phorylation that follo~vs cross-linking of the  
high-affinity imm~~noglobul in  E (IgE) re- 
ceptor (FccRI) o n  mast cells, membrane 
IgM o n  R cells, and the interleukin-5 (IL-5) 
receptor o n  pro-B cells (8, 9 ) .  T o  eliminate 
the  potential contribution of other B cell- 
specific signaling pathways, endogenous 
LYN, or regulation through hematopoietlc 
phosphatases, we coexpressed RTK and 
LYN in a nonhematopoietic cell line. Co-  
expression increased both tyrosine phospho- 
rylation of BTK and BTK enzymatic activ- 
ity 5 to 10 times in multiple experiments 
(Fig. l R ) ,  a significantly greater magnitucie 
than that seen after receptor-mediated ac- 
tivation of BTK ( 8 ,  9 ) .  Coexpression of the  
S R C  family kinase, FYN, ~ v i t h  BTK resulted 
in similar increases in both RTK tyrosine 
phosphorylation and enzymatic activity 
(13) .  In  contrast, coexpression of tlhe SYK 
tyrosine kinase and BTK resulted in no  sig- 
nificant increase in BTK tyrosine phosphc~- 
rylation or activity (13,  14).  Coexpression 
of BTK and LYN therefore reproduces the 
changes in BTK tyrosine phosphorylation 
and activation that follow helnatopoietic 
receptor stimulation and provides a simpli- 
fied system for the stuiiy of BTK activation. 

W e  used this system to determine 
~vhether  the tyrosine kinase activities of 
LYN or RTK were necessary for the  LYN- 
dependent phosphorylation of BTK. Coex- 
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