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Stimulation of Membrane Ruffling and MAP 
Kinase Activation by Distinct Effectors of RAS 

Tom Joneson, Michael A. White, Michael H. Wigler, 
Dafna Bar-Sagi* 

The RAS guanine nucleotide binding proteins activate multiple signaling events that 
regulate cell growth and differentiation. In quiescent fibroblasts, ectopic expression of 
activated H-RAS (H-RASV", where V12 indicates valine-12) induces membrane ruffling, 
mitogen-activated protein (MAP) kinase activation, and stimulation of DNA synthesis. A 
mutant of activated H-RAS, H-RASV'2C40 (where C40 indicates cysteine-40), was iden- 
tified that was defective for MAP kinase activation and stimulation of DNA synthesis, but 
retained the ability to induce membrane ruffling. Another mutant of activated H-RAS, 
H-RASV'2S35 (where S35 indicates serine-35), which activates MAP kinase, was defective 
for stimulation of membrane ruffling and induction of DNA synthesis. Expression of both 
mutants resulted in a stimulation of DNA synthesis that was comparable to that induced 
by H-RASVi2. These results indicate that membrane ruffling and activation of MAP kinase 
represent distinct RAS effector pathways and that input from both pathways is required 
for the mitbgenic activity of RAS. 

RAS proteins are esselltlal colnponellts ot 
receptor-mcd~ated slgnal transduction path- 
ways that co~l t ro l  cell proliferatlo~l and dlf- 
ferentlation. R A S  may control at  least two 
signal transduction pathways, one r e g ~ ~ l a t -  
ing gene expression and the other cantsol- 
ling actin cytoskcleton organization ( 1 ,  2 ) .  
T h e  tirst sig~lalillg pathway involves a series 
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o t  cytoplaslllic scrine-threonlne kinases, 
hereafter referred to as the  M A P  kinase 
pathway. T h e  scco~ld  pathway, hcrcaftcr re- 
ferred to as thc cell lnorphology path~vay, 1s 
nlcdiatcd by ~ n c ~ n b e r s  of thc Rho  family of 
guanosine triphosphatc (GTP) binding pro- 
t e n s ,  which regulate tllc orgall~sation of the 
actin cytoskeleton. T h e  M A P  kinase path- 
ways and the  cell morphology path~vay can 
be dissociated ( 3 ,  4). Ho~vevcr,  the  polnt a t  
which these path\vays divcrgc has not  yet 
hcen Jef i~led.  

blorphological changes iniiuced by ac- 
tivated forms of R A S  nrotcins arc accom- 
pa11ieJ by the  induction of lnelnbrane rut- 
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fling (5). To  examine whether the RAS 
effector RAF protein kinase is required for 
the activation of the cell morphology 
pathway, we tested the ability of activated 
forms of RAF to induce membrane ruf- 
fling. Quiescent rat embryo fibroblast 
(REF-52) cells were microinjected with 
expression plasmids encoding activated H- 
RAS (H-RASVIZ) or RAF-CAAX (a c- 
RAFl kinase targeted to the plasma mem- 
brane by a COOH-terminal lipid modifica- 
tion signal from H-RAS) together with a 
CAT (chloramphenicol acetyltransferase) 
reporter gene controlled by five copies of 
the c-fos serum-response element (5XSRE) 
(6). Because activation of the SRE by RAS 
requires MAP kinase activation (7), SRE 
induction was used in this assay to monitor 
the effects of the injected plasmids on the 
MAP kinase pathway. Each of the ex- 
pressed proteins was efficient in inducing 
SRE expression, which is consistent with 
their well-documented ability to induce 
MAP kinase activation (Fig. 1) (8). How- 
ever, RAF-CAAX did not induce mem- 
brane ruffling (9). Similar results were ob- 
tained with the use of another form of 
activated RAF, V-RAF (10). These obser- 
vations suggest that RAF activation is not 

H-RASV'~ RAF-CAAX 

Fig. 1. Induction of 5XSRE-CAT but not mem- 
brane ruffling by RAF-CAAX. Quiescent REF-52 
cells were microinjected with 5XSRE-CAT re- 
porter construct and plasmids expressing either 
H-RASVq2 (A and C) or RAF-CAAX (B and D) (6). 
Cells were immunostained simultaneously with a 
mixture of antibodies [(A) and (C)] to RAS [fluo- 
rescein staining (A)] and CAT [rhodamine stain- 
ing (C)] or with a mixture of antibodies [(B) and 
(D)] to RAF [fluorescein staining (B)] and CAT 
[rhodamine staining (D)] (21). (E and F) Cells 
injected with either H-RASV12 (E) or RAF-CAAX 
(F) were stained with rhodamine-labeled phalloi- 
din to visualize membrane ruffling (9). 

sufficient to mediate the RAS-induced cell 
morphology pathway. 

To investigate whether RAF activation 
is required for RAS-induced membrane ruf- 
fling, we screened a panel of RAS effector 
binding loop mutants for their ability to 
activate MAP kinase and stimulate mem- 
brane ruffling. We reasoned that if the mor- 
phology pathway and the MAP kinase 
pathway are differentially controlled by 
RAS, it should be possible to identify mu- 
tations in RAS that selectively interfere 
with these activities. The effector binding 
loop mutant of activated H-RAS, 
H-RASV1ZC40, contains a substitution of 
Cys for Tyr at position 40 and is defective 
for RAF binding in the two-hybrid system 
(1 1). REF-52 cells were cotransfected with 
H-RASVIZ and H-RASV1ZC40 expression 
plasmids and a plasmid encoding an 
epitope-tagged version of MAP kinase (1 2). 
After 48 hours, the transiently expressed 
ERK2 was isolated by immunoprecipitation 
and its activity was measured in an immu- 
nocomplex kinase assay with myelin basic 
protein (MBP) as a substrate. Expression of 
H-RASV12"40 had no measurable effect on 
MAP kinase activity, whereas in the same 
assay the expression of H-RASVIZ resulted 
in the activation of MAP kinase (Fig. 2A). 

Likewise, microinjection of H-RASV1ZC40 
did not stimulate SRE-CAT expression (13). 
However, the H-RASV1ZC40 mutant did in- 
duce membrane ruffling with an efficiency 
similar to that induced by H-RASVIZ (Fig. 
2C). The subcellular localization of the 
H-RASV1ZC40 mutant appeared to be iden- 
tical to that of H-RASVIZ, as judged by 
immunofluorescent staining of REF-52 cells 
that were microinjected with expression 
plasmids encoding these proteins (Fig. 2B). 
Together, these results indicate that the 

Fig. 2. Effects of H-RASV12, 
H-RASV12C40, and H-RASV12S35 on 
MAP kinase activity and membrane 
ruffling. (A) Effects of H-RASV12, 
H-RASV12"0, and H-RASV12S35 on 
MAP kinase activity. REF-52 cells 
were cotransfected with expression 
plasmids encoding HA-tagged 

and the indicated H-RAS 

MAP kinase pathway and the cell mor- 
phology pathway bifurcate at the level of 
RAS itself and that RAF activation is 
neither necessary nor sufficient for the 
RAS-mediated effects on cell morphology. 
Induction of membrane ruffling by acti- 
vated RAS is dependent on RAC proteins 
(14). The stimulation of membrane ruf- 
fling by H-RASV12"40 also required RAC, 
as indicated by the fact that membrane 
ruffling was prevented by the co-injection 
of H-RASV1ZC40 with a dominant-inter- 
fering form of RAC, RACNI7 (where N17 
is Asnl') (13). Thus, it is likely that H- 
RASVIZ and H-RASV1Z"40 use the same 
signaling mechanisms to induce mem- 
brane ruffling. 

We examined the relative contribution 
of the MAP kinase pathway and the cell 
morphology pathway to the mitogenic ac- 
tivity of RAS. To  assess the contribution 
of the MAP kinase pathway, we have used 
the RAS effector binding loop mutant 
H-RASV12"5, a transformation-attenuat- 
ed mutant that retains the ability to acti- 
vate the MAP kinase pathway (15). In 
REF-52 cells, ectopic expression of the 
H-RASV12"5 mutant stimulated MAP ki- 
nase activation (Fig. 2A) and SRE-CAT 
expression (1 3) but failed to induce mem- 
brane ruffling (Fig. 2C). Microinjection of 
an expression plasmid encoding the 
H-RASV1ZS35 mutant into quiescent REF- 
52 cells did not stimulate DNA synthesis, 
as measured by 5-bromodeoxyuridine 
(BrdU) incorporation (Fig. 3 )  (16). This 
observation suggests that in REF-52 cells, 
RAS-mediated activation of the MAP 
kinase pathway is not sufficient to induce 
a mitogenic response. This interpretation 
is further supported by our observation 
that RAF-CAAX'did not stimulate DNA 

s 22 ;g 8 3 F ?  
> > > > >  

8 %  2 %%I: 5 ' s  s a :ss  
> I  1 1 1 1  

r y  
I C  4 MBP 

mutants. HA-tagged ~ 4 2 ~ ~ ~ ~  Was C Vector H - R A S V ~ ~  H - R A s V ~ Z C ~ O  H - R A s V ~ ~ S ~ ~  

isolated from cell lysates by immuno- 
precipitation w~th monoclonal anti- 
body 12CA5, and MAP kinase activ- 
ity was measured in an immunocom- 
plex kinase assay with myelin basic 
protein (MBP) as a substrate (12). 
Radioactivity incorporated into MBP 
was visualized by phosphorimaging. 
This experiment was repeated three 
times with similar results. (6) Subcellular localization of H-RASV12 and H-RASV12C40. REF-52 cells were 
microinjected with the indicated expression plasmids (50 p,g/ml) . Six hours after injection, cells were fixed 
and immunostained with antibody to RAS (21). (C) Effects of H-RASV12, H-RASV12C40, and H-RASV12S35 
on membrane ruffling. REF-52 cells were microinjected with the indicated expression vectors (50 p,g/ml). 
Six hours after injection, cells were fixed and stained with rhodamine-labeled phalloidin to visualize the 
actin cytoskeleton (9). 
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. 
Fig. 3. Effects of H-RAS effector 
mutants on DNA synthesis. (A) QUI- 
escent REF-52 cells were rnlcroln- 

I jected with the indicated pDCR-H- 
4s expression plasrnids (5 kg/rnl), 
d DNA synthesis was monitored 
I hours after injection by irnrnuno- 

staining of BrdU incorporated into newly synthesized DNA ( 7 6 ) .  (BI Percentage of BrdU-positive REF-52 
cells 30 hours after m~croinlect~on of td plasm~ds the averages of three 
independent assays in wh~ch at least 1 cells were ! each assay. Error bars 
correspond to the standard deviation 

. Values c o ~  
scored oer ( 

synthesis when microinjected into REF-52 
cells (Fig. 3). Constitutively active MAP 
kinase kinase can induce transformation in 
NIH 3T3 cells (4, 17). The apparent dis- 
crepancy between these findings and ours 
might be due to cell type differences or 
could reflect the possibility that the signal- 
ing mechanisms involved in inducing the 
mitoeenic resDonse are not identical to " 
those leading to cellular transformation. 

To test the role of the cell moruholoev -, 
pathway in RAS-induced mitogenesis, we 
tested the effect of the H-RASV12C40 mu- 
tant on BrdU incorporation. This mutant 
was also inefficient in stimulating DNA 
synthesis when microinjected into quies- 
cent REF-52 cells (Fig. 3). Thus, RAS- 
induced activation of the cell mor~holoev ", 
pathway is by itself not sufficient to pro- 
mote a mitogenic response. However, co- 
injection of expression vectors encoding 
the H-RASV12S35 and H-RASV12C40 mu- 
tants stimulated DNA synthesis to nearly 

respond to 
:ondition in 

Our results provide evidence that RAS 
activates the cell morphology and MAP 
kinase pathways through distinct effector 
systems. The MAP kinase pathway is crit- 
ical for the transmission of signals from 
RAS to the nucleus (19). The RAC path- 
way mediates the effects of RAS on actin 
cytoskeleton (14) and links RAS activa- 
tion to nuclear events (20). Identification 
of the mechanisms by which RAS exerts 
dual control over the RAC and MAP 
kinase pathways should provide insights 
into the respective contribution of these 
pathways to the biological effects of RAS 
on cell proliferation and differentiation. 
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