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Cell Killing by the Drosophila Gene reaper

Kristin White, Elvan Tahaoglu, Hermann Steller

The reaper gene (rpr) is important for the activation of apoptosis in Drosophila. To
investigate whether rpr expression is sufficient to induce apoptosis, transgenic flies were
generated that express ror complementary DNA or the rpr open reading frame in cells that
normally live. Transcription of rpr from a heat-inducible promoter rapidly caused wide-
spread ectopic apoptosis and organismal death. Ectopic overexpression of rpr in the
developing retina resulted in eye ablation. The occurrence of cell death was highly
sensitive to the dosage of the transgene. Because cell death induced by the protein
encoded by rpr (RPR) could be blocked by the baculovirus p35 protein, RPR appears to
activate a death program mediated by a ced-3/ICE (interleukin-1 converting enzyme)-like

protease.

Programmed cell death, or apoptosis, is an
active, gene-directed process that seems to
have been conserved throughout animal
evolution (I). Apoptosis in Drosophila is
ultrastructurally and biochemically similar
to apoptosis in mammals and is controlled
by many of the same signals (2). The reaper
(rpr) gene appears to play a key role in
regulating apoptosis in Drosophila (3). This
gene is expressed in cells that are doomed to
die, and a deletion that includes rpr elimi-
nates all cell death in the Drosophila em-
bryo. rpr may be a switch; when rpr is
expressed in a cell, that cell undergoes apop-
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tosis. The gene may activate downstream
cell death effectors or suppress protective
functions, which in turn prevent the activa-
tion of constitutively expressed effectors.

The rpr gene encodes a small (65-amino
acid) peptide that shares limited amino acid
similarity with the “death domains” of the
mammalian tumor necrosis factor receptor
(TNFR) family, which includes the Fas an-
tigen and a number of interacting proteins
(4). TNFR 1 and Fas induce cell death
when activated by ligand binding or when
overexpressed, and this killing requires the
death domain (5, 6).

To investigate the ability of RPR to kill
cells that normally live, we generated trans-
genic flies in which rpr was both overex-
pressed and expressed ectopically. Initially,
we used a transgene that expressed an rpr
complementary DNA (cDNA) under the
control of the hsp70 promoter (hsrpr) (7).
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Upon heat shock (8), massive ectopic cell
death was induced throughout embryos car-
rying one or two copies of hsrpr (Fig. 1, C
and D). Embryos expressing other trans-
genes from the same promoter did not show

Fig. 1. Ectopically expressed rpr in-
duces cell death in a large number of
embryonic cells. All embryos were
given a 1-hour heat shock and
stained with acridine orange 1 hour
later (8). The brightly staining dots
represent apoptotic cells. (A) Control
embryo transgenic for hsdisco,
which affects morphogenesis in the
embryo but does not rapidly induce
ectopic cell death. (B) Embryo trans-
genic for the mutant hsrprORF. Ex-
pression of this construct does not
induce ectopic apoptosis. (C and D)
hsrpr embryos. This transgene in-
duces much ectopic cell death in
both wild-type and H99 mutant em-
bryos. Apoptotic cells could be seen

any excessive cell death after a similar treat-
ment (Fig. 1A) (9).

The rpr open reading frame (ORF) gene
also induced ectopic apoptosis when ectopi-

cally expressed (hsrprORF) (10) (Fig. 1E),

throughout the embryo, and the morphology of the embryos was severely disrupted. Embryos carrying
two copies of hsrpr that were also homozygous for H99 were indistinguishable from those not carrying
this deletion. (E) hsrprORF embryo. This construct also induces ectopic cell death and abnormal mor-

phology in both wild-type and homozygous H99 embryos, which indicates that the activity of the ror

cDNA is due to the ORF. (F) H99 embryos after heat shock do not show increased cell death.

Fig. 2. Expression of rpr
leads to the death of cells
that would normally live.
Transgenic flies that car-
ry increasing copies of
pGMRrpr have increas-
ingly small eyes (23), as
shown here in scanning
electron microscope im-
ages. (A) Eyes of animals
carrying one copy of
pGMRrpr are apparently
normal. (B) Two copies of
pGMRrpr cause the oc-
currence of a rough eye.
(C) Three copies de-
crease the size of the eye
substantially. (D) The eye
is eliminated by four cop-
ies of the pPGMRrpr trans-

gene. This phenotype is a result of ectopic apoptosis. (E) Wild-type third instar eye disc labeled with
the TUNEL technigue (24). (F) Massive amounts of TUNEL labeling can be seen after the morphoge-
netic furrow in third instar eye discs from larvae carrying four copies of the pGMRrpr transgene. The
effect of this transgene can be blocked with the baculovirus antiapoptotic gene p35, which indicates

that cell death alone can account for the defects in these flies. (G) The pGMRp35 transgene causes a

slightly rough eye (72). (H) pGMRp35 with two copies of pGMRrpr.

Fig. 3. Some developmental stages
are resistant to killing by hsrpr. Embry-
os were heat-shocked at various stag-
es of development (78), and the num-
ber of transgenic animals who survived
to adulthood was scored as a percent
of the control. Lines 37 (white) and 79
(light gray) carry the mutant form of
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gray) and 53 (black) carry the hsror cDNA. Late embryos and late pupae are resistant to rpr-induced
killing. The cDNA construct proved more effective at killing than the ORF alone.
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indicating that the ORF encodes rpr func-
tion. The amount of death induced by this
transgene was less than that seen with the
whole cDNA. The small rprORF transcript
may be less stable than the cDNA, or re-
gions outside the ORF may contain addi-
tional sequences necessary for optimal rpr
production. As a further control, we gener-
ated a mutant form of the rpr ORF by
introducing a 1-base pair insertion imme-
diately after the AUG triplet, leading to an
unrelated ORF of similar size to rpr (hsrpr-
ORFmut). This mutant form of the ORF did
not induce any ectopic cell death after heat
shock (Fig. 1B).

hsrpr was also able to induce a large
amount of apoptosis in embryos homozy-
gous for Df(3L)hidH99 (H99), which re-
moves rpr and head involution defective (hid),
another gene implicated in Drosophila cell
death (11). This deletion blocks both nor-
mally occurring cell death and ectopic
death induced by developmental defects
and low levels of x-rays (3). Ectopic expres-
sion of other genes did not cause apoptosis
in H99 homozygous embryos (9). Apoptosis
was also induced by hsrprORF in H99 ho-
mozygous embryos, although at lower levels.
Thus, rpr expression alone is sufficient to
kill a large number of cells in the embryo,
and this killing does not require the activity
of the hid gene.

In the embryo, the fate of individual
cells after rpr induction cannot be easily
followed. To examine whether rpr could kill
all cells in a particular tissue, we examined
the effect of rpr overexpression in the Dro-
sophila compound eye. The rpr cDNA was
placed under the control of an eye-specific
promoter (12), and the resulting construct,
pGMRrpr, was used to generate transgenic
flies (13). This transgene ablated the eye in
a dose-dependent manner. Flies carrying a
single copy of pPGMRrpr had overall normal
eyes (Fig. 2A). Two copies resulted in a
“rough” eye, which was also reduced in size
(Fig. 2B). Three and four copies resulted in
a very small eye and an eyeless fly, respec-
tively (Fig. 2, C and D). Only the bristles of
the eye appeared to be spared. This may
reflect a lack of expression of the transgene
in the bristle cells, or these cells may be
resistant to rpr killing.

The reduction in eye size seen in the
pGMRrpr transformants could be the result
of activating apoptosis or an effect on the
development of the retina. We therefore
used the TUNEL (14) technique to visual-
ize the DNA breaks that are characteristic
of apoptotic cells. Third instar eye discs
from wild-type larvae and from larvae car-
rying four copies of pPGMRrpr were assayed
(Fig. 2, E and F). A small number of apop-
totic cells were visible in wild-type discs. In
contrast, large numbers of apoptotic cells
could be seen behind the morphogenetic



furrow in transgenic larvae. Thus, the eye-
less phenotype of these animals is due to
ectopic apoptosis.

Overexpression of a gene may induce
cell death directly through its normal func-
tion in the cell death pathway or indirectly
as a result of an insult to the general phys-
iology or developmental program of the
cell. We therefore investigated, by coex-
pressing rpr and the antiapoptotic p35 bacu-
lovirus gene, whether ectopic rpr expression
had effects on eye development in the ab-
sence of apoptosis. The p35 protein has
been shown to block cell death in verte-
brate and invertebrate cells (12, 15), appar-
ently by specifically inhibiting the ced-3/
ICE (interleukin-1 converting enzyme)
family of proteases (16). Expression of p35
in the eyes of pGMRrpr transgenics abro-
gated the effects of 7pr; the eyes of the flies
carrying both pGMRrpr and pGMRp35
transgenes were indistinguishable from
those of flies carrying pPGMRp35 alone (Fig.
2, G and H) (17). Thus, rpr expression does
not have general effects on eye develop-
ment, differentiation, or pattern formation,
but rather acts specifically and directly in
the cell death pathway. In addition, the
ability of p35 to block rpr-induced death
implicates a ced-3/ICE-like protease in both
ectopic and endogenous rpr killing. This
type of analysis underscores one benefit of
an in vivo system, as it is often difficult to
differentiate direct and indirect effects of
gene overexpression in cultured cells.
When cell death is blocked in these sys-
tems, it is generally not possible to tell if a
cell is returned to a “normal” state.

To assess the effect of ectopic 1pr expres-
sion at other stages of development, we
tested the ability of hsrpr to kill flies (Fig. 3)
(18). A single heat pulse applied at a variety
of developmental stages killed flies carrying
a single copy of the hsrpr or hsrprORF trans-
gene. Two stages appeared resistant to kill-
ing by rpr: late embryos and late pupae.
Both of these stages are also resistant to
killing by x-rays, perhaps because of a slow-
er rate of cell division (19). This suggests
that killing by vpr may be more efficient in
dividing cells. Alternatively, at these stages
cells may be highly protected against cell
death or may lack essential apoptotic effec-
tor functions. :

Adult flies can also be killed by hsrpr
(20). Four to 6 days after a 1-hour heat
shock at 39°C, about half of the flies carry-
ing the hsrpr or the hsrprORF transgene died
rather suddenly. However, more than 85%
of their nontransgenic siblings survived, as
did the non-heat-shocked transgenics, a
result reminiscent of the response of adult
flies to radiation (19).

Our results indicate that rpr expression
can kill many different cell types at many
stages of development, which supports the

idea that rpr is sufficient to activate apop-
tosis. Because killing by rpr is unusually
dose-dependent, constructs such as pPGMR-
rpr could be used as sensitive reporters to
identify genes involved in rpr-mediated kill-
ing. Given the homology with the death
domain of TNFR, which is required for both
killing and multimerization of the receptor
(6, 21), the described dosage dependency
may reflect the need of rpr to form multi-
mers for cell killing. Such a model is attrac-
tive because it would provide a mechanism
for safeguarding against occasional errors in
the control of rpr expression. Interestingly,
recombinant rpr multimerizes in vitro (22),
but the functional significance of this find-
ing has not been tested in vivo.
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