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Rapid Collapse of Northern
Larsen Ice Shelf, Antarctica

Helmut Rott, Pedro Skvarca, Thomas Nagler

In January 1995, 4200 square kilometers of the northern Larsen Ice Shelf, Antarctic
Peninsula, broke away. Radar images from the ERS-1 satellite, complemented by field
observations, showed that the two northernmost sections of the ice shelf fractured and
disintegrated almost completely within a few days. This breakup followed a period of
steady retreat that coincided with a regional trend of atmospheric warming. The obser-
vations imply that after an ice shelf retreats beyond a critical limit, it may collapse rapidly

as a result of perturbated mass balance.

Tce shelves cover 11% of the total area of
Antarctica (I) and play an important role
in the mass budget and dynamics of the
Antarctic Ice Sheet. Most of the ice that
has accumulated over the grounded parts of
Antarctica is discharged to ice shelves,
where it is lost as icebergs along the seaward
edges as well as by basal melting (2). Be-
cause ice shelves are exposed to both atmo-
sphere and ocean, they are sensitive to
changes in the temperature and circulation
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of either (3). The 0°C summer isotherm has
been taken as the climatic limit for the
existence of ice shelves along the west coast
of the Antarctic Peninsula (4). Between
1966 and 1989, the Wordie Ice Shelf (Fig.
1) decreased from ~2000 to 700 km?, prob-
ably as a result of regional atmospheric
warming (5). Here, we report on the recent
disintegration of the northern Larsen Ice
Shelf (LIS).

The LIS extends along the eastern side
of the Antarctic Peninsula from latitude
64° to 74°S (Fig. 1). The part of the LIS
north of Robertson Island has retreated
slowly but constantly since the 1940s (6, 7).
The retreat accelerated after 1975 (8), and
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finally two parts of the ice shelf collapsed
early in 1995. We analyzed this collapse
with the use of sequences of synthetic ap-
erture radar (SAR) images from the ERS-1
satellite (9). The satellite data analysis was
complemented by field observations made
during October and November 1994.

For the analysis, we separated the ice
shelf north of Jason Peninsula (Fig. 2) into
four sections: section 1, Jason Peninsula to
Seal Nunataks; section 2, the area around
Seal Nunataks; section 3, Seal Nunataks
to Sobral Peninsula; and section 4, the
remnant part between James Ross Island
and the Antarctic Peninsula (10). Sec-
tions 1, 3, and 4 receive major ice input
from grounded zones (11). The ratios of
grounded catchment basin to floating ice
shelf area in sections 1, 3, and 4, based on
the ice shelf extent in March 1986 (Table
1), were clearly smaller than the ratios for
most other Antarctic ice shelves. Howev-
er, because the accumulation on the gla-
ciers descending from the peninsula pla-
teau is up to four times the accumulation
on the ice shelf (12), it can be concluded
that the ice contributed by grounded parts
surpassed the mass accumulated in situ.
Section 2 is an almost stagnant part of the
ice shelf that is cut off from the ocean by
ice-covered Robertson Island and sepa-
rates the faster flowing sections to the
north and south. The ice shelf in Larsen
Inlet (Fig. 2) disappeared almost com-
pletely between March 1986 and Novem-
ber 1989 (8).

The ice front between Jason Peninsula
and Robertson Island (section 1) showed a
comparatively constant seaward advance
between 1975 and 1992. The total displace-
ment was 5 to 6 km, with little calving loss
(6). The main part of the ice front ad-
vanced until 25 January 1995, but small
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Fig. 1. Map of the Antarctic Peninsula with loca-
tion of ice shelves.

icebergs broke away from the heavily rifted
zone south of Robertson Island after July
1992. A major rift of ~25 km in length,
corresponding to the later calving front
south of Robertson Island, was already vis-
ible in the SAR image of July 1992 and
looks similar in the image of 25 January
1995. A large iceberg covering 1720 km?,
and many small pieces corresponding to a
previous ice shelf area of 550 km?, broke
away between 25 and 30 January 1995 (Fig.
2). Although major calving losses after ex-
tended periods of ice front advance are

characteristic of ice shelves, the temporal
coincidence of this calving with the disin-
tegration events farther north may indicate
the beginning of a period of major retreat.

The most rapid retreat was observed for
the part of the ice shelf between Seal Nu-
nataks and Sobral Peninsula (section 3).
The two main tributaries to this section are
Drygalski Glacier and the Dinsmoor, Bom-
bardier, and Edgeworth (D-B-E) glaciers,
which form a single stream at the grounding
line. The SAR image of 16 February 1993
shows that the ice surface was covered by a

!'."4\, ’

James
Ross Isla

"} Sopral
& Peninsula

30 January 1995
ERS-1 Orbit 18532

Fig. 2. Mosaic of ERS-1 SAR images (70) of the northern LIS from 2 July 1992 (left) and 30 January 1995

(right). Section numbers are circled; dashed lines indicate separations between sections 1, 2, and 3.
Dotted lines are profiles of field measurements. The image brightness is related to the intensity of the
backscattered radar signal. In the July image, the snow and ice surfaces appear bright because the
frozen firn and ice produce high radar backscatter, whereas the backscatter from the melting surfaces in
January is low (26).
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pattern of undulating melt streams and
lakes aligned in the direction of the ice flow
(Fig. 3). From 1975 to 1989, the ice front
between Lindenberg Island and Sobral Pen-
insula retreated at an average rate of ~1
km/year (8). The retreat accelerated during
summer 1992-1993, when 209 km? of the
ice shelf were lost within 10 weeks, com-
pared with 241 km? during the previous 6.5
years.

The retreat slowed between February
1993 and November 1994, but the fractur-
ing process intensified. Until October—No-
vember 1991, the ice shelf (with the excep-
tion of the area downstream of the D-B-E
glaciers) was almost ideally flat, with no
distinct rifts and few crevasses. Field obser-
vations in late 1994 showed that the surface
morphology was quite different. The main
parts of the ice shelf contained gentle large-
scale surface undulations, and several rifts
many kilometers in length had formed ap-
proximately parallel to the ice front. The
rifts separated plates that differed by as
much as several meters in surface height,
which implied that the fractures cut com-
pletely through the ice. Downstream of the
D-B-E glaciers, the ice was heavily cre-
vassed; at one location, an ice wedge rose
15 m above the level ice shelf. Although
major parts of the ice shelf were already
strongly fractured, a combination of cold
temperatures and a dense cover of fast ice
extending many kilometers seaward evi-
dently kept the ice shelf from breaking
apart.

The final disintegration of section 3
started during a period of intense north-
westerly winds and high temperatures after
20 January 1995. Between November 1994
and 25 January 1995, the ice front be-
tween Lindenberg Island and Sobral Pen-
insula retreated by 3 km on average, fol-
lowed by a further retreat of ~2 km be-
tween 25 and 28 January. During the next
2 days, the disintegration process acceler-
ated considerably (Fig. 4). By 30 January,
parts of the ice boundary north of Drygal-
ski Glacier had already retreated to the
grounding line. The ice broke into com-
paratively small pieces. The maximum dis-
tance covered by an iceberg within 56.5
hours was 42 km (Fig. 4). The forces act-
ing on icebergs driven by the wind (13)
caused the icebergs to drift at 40° to 90° to
the left of the estimated surface wind di-
rection. The rotation and convergence of
the icebergs during these 2 days indicated
an additional influence from ocean cur-
rents.

On 2 February, the ice along the north-
ern and eastern boundary of Larsen Nuna-
tak broke away, shifting the seashore close
to Matienzo station on this nunatak (14).
The ice front between Robertson and Lin-
denberg islands remained stable; oblique
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aerial photography from 3 March 1995
showed that a small strip of the ice shelf still
linked the two islands. Between November
1994 and March 1995, the area of section 3
decreased from 1960 to 320 km? (15).
The ice shelf across Prince Gustav
Channel (section 4) was separated from
the main part of the LIS sometime in 1957
or 1958 (7). It was nourished by ice drain-
age from the Antarctic Peninsula (with
Sjogren and Boydell glaciers as the main
tributaries), by ice input from James Ross
Island, and by long-term snow accumula-
tion on fast sea ice (Fig. 5). The ice from
Sjogren and Boydell glaciers extended
eastward toward Persson Island, whereas
ice from James Ross Island touched the
eastern side of Persson Island and extend-
ed several kilometers farther westward to
the south of the island. The position of the
northern ice front did not change much

between 1957 and 1986 (6); the only ma-
jor change occurred at the coast of Cape
Obelisk, where a polynya is visible in the
Landsat image of 1 March 1986. The
southern ice front retreated by ~15 km
between 1958 and 1969 (7), was almost
stationary between 1969 and 1986, and
showed further retreat by ~5 km between
1986 and August 1993.

The final disintegration of section 4
started in the north with the detachment of
the ice boundary along the coast near Cape
Obelisk, which eliminated constraining
backforces for the ice downstream from
Sjogren and Boydell glaciers. In response to
changes of the strain field in this area, the
ice front advanced as much as 350 m from
February 1988 to November 1989. The
main part of this ice broke away during
summer 1992-1993 (16). On 30 January
1995, two small parts of the ice shelf re-

Table 1. Ratios of grounded catchment basin to floating ice shelf area (A /A) on 1 March 1986, and ice
shelf areas from Landsat images (1 March 1986) and from ERS-1 SAR images (other dates).

Area (km?)
Location (1 Nfagr{: ’?{ 86)
1 March 86 2 July 92 26 August 93 30 January 95
Section 1 0.74 11,560 11,775 11,770 9,496
Section 3 1.07 2,488 2,244 2,027 1,101*
Section 4 1.66 984 762 528 224
Larsen Inlet 1.94 399 36 26 24

*The area of section 3 further decreased to 320 km? after 30 January 1995.

Drygalski
Glacier
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Fig. 3. ERS-1 SAR im-
age of the LIS north of
Seal Nunataks, acquired
on 16 February 1993,
with ice front positions
(circled numbers) super-
imposed as follows: 1, 1
March 1986; 2, 8 De-
cember 1992; 3, 12 Jan-
uary 1993; 4, 16 Febru-
ary 1993; 5, 23 October

1994; 6, 25 January
1995; 7, 28 January
1995; 8, 30 January

1995; and 9, 22 March
1995. Bold white line,
grounding line; dashed
line, boundary between
sections 2 and 3 (see
Fig. 2). Data for the ice
front positions are from
ERS-1, except for posi-
tions 1 (Landsat), 5 (field
observations), and 9
(NOAA).
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mained on the west coast, and another part
remained in Réhss Bay. A National Oceanic
and Atmospheric Administration (NOAA)
image from 9 January 1995 shows that al-
though the channel was open, major icebergs
were close to the previous ice shelf, which
indicated that the shelf had broken only a
few days earlier.

An ice shelf is thought to be able to
survive small temporary perturbations of the
mass balance, but not large prolonged ones
(17). Changes in the total mass of an ice
shelf are determined by the mass added or
removed at the surface and on the bottom,
by the rate of ice supply from grounded areas,
and by the amount of ice exported in calv-
ing. Mass balance data are available for the
period 1980 to 1994 along the profile in
section 1, for the period 1978 to 1994 for five
points of section 2, and for the period 1984
to 1994 for two points of section 3. The
specific mass balance (18) decreased from
180 mm/year close to Jason Peninsula in the
south to 70 mmy/year for the ice shelf north of
Larsen Nunatak. Taking into account the
estimated total snow accumulation of 200 to
250 mm/year, this decrease indicates an in-
creasing loss of meltwater to the sea to the
north. No information is available on basal
melting or freezing. The stagnant ice of sec-
tion 2 suggests that, at least for this part of

ERS-1 28 January 1995

the ice shelf, basal melting and surface mass
balance have been approximately equal in
the long term. However, the retreat of the
ice front likely resulted in increased basal
melt rates in some parts of sections 3 and 4,
because the melt rates are usually highest
close to the ice front (3).

Increased surface melt in recent sum-
mers, and possibly also increased basal melt,
were certainly important factors in the ac-
celerated retreat. At five points west of Seal
Nunataks, the surface mass balance was
close to zero for the period November 1988
to October 1994, whereas between 1978
and 1988 it was 200 mm/year. Similar long-
term changes in annual mass balance were
observed along the profile in section 1 (19).
Fast retreat and final disintegration of the
northernmost sections of the LIS took place
during a period of warm summers, which
began during 1986-1987 and included the
two warmest summers recorded at Maram-
bio station (Fig. 1): The mean temperatures
were +0.2°C during summer 1992-1993
and +0.6°C during summer 1994-1995,
compared to a mean of -2.0°C for the 24-
year record. Mean annual air temperatures
for stations at the Antarctic Peninsula have
increased since the 1950s (20). The longest
climatological record in this region (since
1904 at Orcadas station, South Orkney Is-

ERS-1 30 January 1995

Fig. 4. ERS-1 SAR images acquired on 28 January 1995, 04:08 GMT (left), and 30 January 1995, 12:46
GMT (right). Several icebergs are enhanced and numbered to illustrate the drift.

Fig. 5. ERS-1 SAR imag-
es acquired on 2 July
1992, 26 August 1993, . ')
and 30 January 1995, R .
showing the ice shelf be- y
tween the Antarctic Pen-
insula and James Ross
Island. The grounding line
is shown in black; S-B,
Sjogren-Boydell glaciers.
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land) indicates that this warming trend ex-
tends back to the 1930s (21). The retreat of
the northern LIS, in accordance with the
retreat of the ice shelves at the west coast of
the Antarctic Peninsula (5) and of the tide-
water glaciers of James Ross Island (22), is
another indicator of changes in regional
climate.

The rapidity of the collapse further im-
plicates the dominant role of fracture dy-
namics in ice shelf disintegration (17).
The closest time sequence of the event is
available for section 3. As long as the ice
front was normal to the flow lines, trans-
verse rifting was the primary mechanism
for iceberg calving. The retreat of the ice
front along Sobral Peninsula resulted in a
decrease of lateral drag in the northern
part, whereas in the south, Lindenberg
Island acted as a pinning point that main-
tained the ice front south of the island
(Fig. 3). Consequently, the resulting stress
vector at the ice front north of Lindenberg
Island rotated counterclockwise until it
was finally aligned approximately parallel
to the flow lines, triggering longitudinal
rifting in addition to transverse rifting
(23). Fractures related to tidal motion
along the grounding line were also impor-
tant, as were fractures related to motion
discontinuities along the boundary of sec-
tions 2 and 3 (where we observed up-
welling water even during cold periods).
Another critical zone was the area down-
stream of the D-B-E glaciers where the ice
flow changed direction by 90° and di-
verged laterally (24). During summer, in-
filtration of meltwater from the surface
and upwelling of seawater accelerated the
fracturing. Other triggers for the final dis-
integration were likely the presence of
strong winds, predominantly from the
northwest, and high air temperatures during
the last 10 days of January. During the peak
period, 23 to 26 January, the mean wind
velocity at Marambio station was 49 knots
(25). After the ice had retreated gradually
beyond a certain critical limit, these factors
finally caused the complete disintegration of
the ice shelves within a few days.

&
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Our observations suggest that ice shelves
close to the climatic limit for existence may
disintegrate rapidly. During the next years,
increased attention should be paid to the
section of the LIS south of Seal Nunataks,
which may be subject to major changes if
the warming continues. In November 1994,
we observed a transverse rift ~50 km in
length in section 1, ~30 km inland from
the ice front.
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DNA: An Extensible Molecule

Philippe Cluzel, Anne Lebrun, Christoph Heller,*
Richard Lavery, Jean-Louis Viovy, Didier Chatenay,
Frangois Caroni

The force-displacement response of a single duplex DNA molecule was measured. The
force saturates at a plateau around 70 piconewtons, which ends when the DNA has been
stretched about 1.7 times its contour length. This behavior reveals a highly cooperative
transition to a state here termed S-DNA. Addition of an intercalator suppresses this
transition. Molecular modeling of the process also yields a force plateau and suggests a
structure for the extended form. These results may shed light on biological processes
involving DNA extension and open the route for mechanical studies on individual mol-

ecules in a previously unexplored range.

Many biologically important processes in-
volving DNA are accompanied by deforma-
tions of the double helix, and the ability of
DNA to stretch “like a spiral spring in ten-
sion” (I, p. 739) was recognized long ago
(1-3). The mechanics of DNA has regained
interest in recent years as a result of the
possibility of working with individual mole-
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cules. The extension of a duplex DNA mol-
ecule under the action of an external force
was measured by Smith et al. (4) and com-
pared to predictions of the wormlike chain
model (5). In good agreement with this the-
ory, these researchers observed that a force of
2 to 3 pN is able to stretch the DNA to 90%
of its contour length at rest in the B-form, [,
and that the force then rises sharply when
the extension approaches l,. This experi-
ment was restricted to forces smaller than 20
to 30 pN, whereas it has been suggested that
DNA is able to withstand about 500 pN
before breaking (6). We present here a study
of the force-extension response of a single
duplex DNA molecule submitted to forces
ranging from 10 to 160 pN, using an appa-
ratus (Fig. 1) that improves on that devel-
oped by Kishino and Yanagida to study the
actin-myosin interaction (7).

We repeated our experiment many times
using different fibers and stretching velocities
(a few seconds was typically required for
stretching). Two types of curves were ob-





