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Newly Learned Auditory Responses Mediated by
NMDA Receptors in the Owl Inferior Colliculus

Daniel E. Feldman,” Michael S. Brainard, Eric |. Knudsen

Alignment of auditory and visual receptive fields in the optic tectum of the barn owl (Tyto
alba) is maintained through experience-dependent modification of auditory responses in
the external nucleus of the inferior colliculus (ICX), which provides auditory input to the
tectum. Newly learned tectal auditory responses, induced by altered visual experience,
were found to be pharmacologically distinct from normal responses expressed at the
same tectal sites. N-methyl-D-aspartate (NMDA) receptor antagonists administered sys-
temically or applied locally in the ICX reduced learned responses more than normal
responses. This differential blockade was not observed with non-NMDA or broad-spec-
trum antagonists. Thus, NMDA receptors preferentially mediate the expression of novel
neuronal responses induced by experience during development.

Experience-dependent modification of neu-
ronal responses tailors the function of neural
circuits based on the sensory experience of
the individual. Pharmacological studies of
this process (1) have implicated the NMDA
subtype of excitatory amino acid (EAA) re-
ceptor in the induction of experience-depen-
dent synaptic modification. However, inter-
pretation of these experiments is difficult
because the specific effects of NMDA recep-
tor blockade are usually confounded with
nonspecific effects of blocking postsynaptic
activity (2). We have used a different ap-
proach in a system in which normal and
newly learned responses can be recorded si-
multaneously at single sites. Here we show
that newly functional circuitry, once it has
been induced by experience-dependent pro-
cesses, is pharmacologically specialized:
Transmission through this circuitry is prefer-
entially mediated by NMDA receptors, rel-
ative to transmission through original cir-
cuitry (3).

Barn owls localize sounds using interau-
ral timing difference (ITD) as a cue for
sound source azimuth. In the ICX, where
the owl’s map of auditory space is synthe-
sized, neurons are tuned to specific ITD
values and are organized into a map of ['TD,
and hence of azimuthal space. The auditory
space map is relayed topographically to the
optic tectum, where it is aligned with the
tectal map of visual space so that tectal
neurons are tuned to the value of ITD
produced by sounds at the locations of their
visual receptive fields (VRFs) (4). This
alignment is dynamically maintained by ex-
perience-dependent plasticity and can be
altered systematically if owls are raised
wearing prismatic spectacles that optically
displace the visual field in azimuth (5, 6).
During prism-rearing, tectal neurons devel-
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op novel responses to sounds with ITDs
that correspond to the location of their
optically displaced VRFs (schematized in
Fig. 1A). At many tectal sites, these novel
responses, which are to ITDs that are sys-
tematically displaced from the normal ITD
range (6), first appear while responses to
ITDs in the normal range continue to be
expressed, creating a “transition state” I[TD
tuning curve (7) (Fig. 1A, middle panel).
Transition state tuning curves are often ab-
normally broad and sometimes double-
peaked. They are defined here as those ITD
tuning curves that include both responses
to ITD values that are normally appropriate
for that tectal site, termed “normal respons-
es,” and responses to ITD values corre-
sponding to the prismatically displaced
VREF, termed “learned responses” (8). Over
subsequent weeks, normal responses are
eliminated to produce a narrow I'TD tuning
curve centered on the learned ITD value
(Fig. 1A, bottom panel).

The alteration of tectal ITD tuning can
be accounted for by experience-dependent
plasticity that occurs at the level of the ICX
(6, 7). In the study reported here, we com-
pared the pharmacology of ICX circuits me-
diating normal and newly learned responses
in prism-reared owls. We did this by apply-
ing EAA receptor antagonists either sys-
temically or locally into the ICX while
recording responses at tectal sites displaying
transition state ITD tuning. We focused on
NMDA and non-NMDA subtypes of EAA
receptors, because auditory transmission in
the ICX of normal owls is known to be
mediated through these receptors (9). ITD
tuning was monitored in the optic tectum
rather than in the ICX, because tectal VRFs
allow unambiguous determination of nor-
mal ITD tuning for any given site (6, 8).

Systemic injection of the anesthetic and
NMDA receptor antagonist ketamine HCI
(10) at 10 to 15 mg per kilogram of body
weight, a dose known to selectively antag-
onize NMDA receptors in the ICX (I1),
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preferentially reduced learned responses rel-
ative to normal responses at tectal sites
exhibiting transition state ITD tuning (12).
A representative site is shown in Fig. 1B.
The effect of systemic ketamine was mea-
sured at 23 tectal sites displaying transition
state ITD tuning in five prism-reared owls
(Fig. 1C). For each site, the magnitude of
response blockade was calculated separately
for normal and learned responses (Fig. 1B,
gray areas). Ketamine preferentially reduced
learned responses at all sites (13). On aver-
age, ketamine reduced learned responses by
62% while reducing normal responses by
only 2% from control levels. In contrast,
Valium (0.5 to 1 mg/kg), a drug with no
known action at NMDA receptors, reduced
both normal and learned responses equally
[learned responses were reduced by 43%
and normal responses were reduced by 41%,
respectively, relative to control (n = 4)].
To test the hypothesis that the effect of
systemic ketamine was due to antagonism of
NMDA receptors in the ICX, the NMDA
receptor antagonist DL-2-amino-5-phospho-
novaleric acid (AP-5) was iontophoresed
into the ICX while recording from tectal
sites that displayed transition state ITD tun-
ing. AP-5 was iontophoresed at an ICX site
that was topographically matched (14) to
the tectal recording site (Fig. 2A) and was
applied with ejection currents (15 to 40 nA)
known to selectively antagonize NMDA re-
ceptors relative to non-NMDA receptors
(9). AP-5 was applied during one or more
20- to 30-min periods interleaved with con-
trol (recovery) periods (15). Consistent with
the known role of NMDA receptors in me-
diating ICX auditory responses (9), the over-
all level of response was depressed during
periods of AP-5 iontophoresis. In addition,
AP-5, like ketamine, preferentially reduced
learned responses relative to normal respons-
es (Fig. 2B). The effect of AP-5 iontophore-
sis in the ICX was measured at 29 tectal sites
in 12 prism-reared owls. AP-5 reduced
learned responses more than normal respons-
es at every site (Fig. 2C). In a second anal-
ysis, response blockade was calculated sepa-
rately for each ITD tested. A significant
correlation existed between the ITD of a
stimulus, relative to the predicted normal
ITD value, and the degree to which AP-5
blocked its response (Fig. 2D). There was no
correlation between the response decrement
caused by AP-5 and the original magnitude
of the control response (16). This preferen-
tial blockade of learned responses by AP-5
was apparent even though ITD tuning at the
iontophoresis site always matched either the
transition state tuning or the normal tuning
for the tectal site (14). To rule out the
possibility that the AP-5-resistant normal
responses might be mediated by non-EA Aer-
gic synapses or by synapses outside of the
ICX, larger amounts (80 nA) of AP-5 were



applied in combination with the non-
NMDA receptor antagonist 6-cyano-7-ni-
troquinoxaline-2,3-dione (CNQX; also 80
- nA) at some sites (17). Combined AP-5 and
CNQX application greatly reduced normal
responses, relative to the reduction achieved
by NMDA receptor-specific amounts of
AP-5 alone (Fig. 2E; triangles in Fig. 2C).
To exclude the possibility that newly
learned responses might be preferentially
susceptible to blockade by any EAA recep-
tor antagonist (as might be the case if cir-
cuits mediating them involved more syn-
apses than did circuits mediating normal
responses), CNQX or the broad-spectrum
EAA receptor antagonist kynurenic acid
(KYN) were applied using the same proto-
col as for AP-5 (Fig. 3). Unlike AP-5, both
these drugs reduced normal responses as
much or more than learned responses (Fig.
3, A, C, and D). Across all sites tested,
KYN (n = 10) blocked responses to all
[TDs equally (Fig. 3B), whereas CNQX (n
= 9) showed a slight preferential blockade
of responses to ITDs near the normal value
(Fig. 3E). We observed that KYN and
CNQX reduced overall tectal responses less,
on average, than did AP-5, despite larger
iontophoretic currents. This is consistent
with biochemical properties of KYN and
CNQX (18) that predict smaller regions of
effective concentration for these drugs than
for AP-5. To determine if the relatively
small reduction of overall responses ob-
served with KYN and CNQX was responsi-
ble for the apparent difference in the effects
of these drugs relative to AP-5, we identi-

fied six sites at which AP-5 and either KYN .

or CNQX reduced overall responses by ap-
proximately the same amount (Fig. 3F). At
each of these sites, AP-5 reduced learned
responses preferentially whereas KYN or
CNQX either reduced responses equally or
reduced normal responses preferentially
(19).

We conclude that NMDA receptors in:
the ICX contribute differentially to the
expression of learned responses, at least
during the period when learning is taking
place. The result that ketamine and AP-5,
but not KYN or CNQX, greatly reduce
learned responses is consistent with a
model in which these responses are medi-
ated primarily by NMDA receptors. In
contrast, normal responses, which are re-
duced by all antagonists, are likely to be
mediated by both NMDA and non-
NMDA receptors (20). This model is sup-
ported by the observation that newly
learned tectal responses have a longer la-
tency and time course than do normal
responses (7). Experiments in other devel-
opmental systems have focused on the role
of NMDA receptors in the induction of
novel responses (1), as opposed to their
expression, and thus our results suggest a

cently in the hippocampus (24). How
pharmacologically distinct synaptic popu-
lations develop during prism-rearing is un-
known; possibilities include the formation
or functional activation of synapses en-
riched in NMDA receptors to mediate
learned responses, or the existence of an
NMDA receptor—specific form of LTP.
The current results also suggest an alter-
native interpretation of experiments in
which chronic application of NMDA re-
ceptor antagonists prevents experience-de-
pendent synaptic modification during de-
velopment (I). Such experiments have
been used to argue that NMDA receptor
currents trigger synaptic enhancement in
these systems, as they do in LTP (25). The
present results suggest that NMDA receptor
antagonists may also prevent plasticity
through a specific blockade of newly
learned postsynaptic responses. Blockade of
the earliest learned responses would prevent
the concurrent pre- and postsynaptic acti-
vation required for continued enhancement
of these responses, and thus learned re-
sponses would fail to develop. It remains to
be determined whether NMDA receptors

new role for NMDA receptors in synaptic
modification during development. Prece-
dents for NMDA receptors mediating the
expression of synaptic modification are
found in metabotropic glutamate recep-
tor—induced potentiation in the dentate
gyrus, anoxic long-term potentiation
(LTP), and the kindling model of epilepsy
(21).

In normal owls, the ratio of NMDA to
non-NMDA receptor contribution to I[CX
auditory responses is constant across all
ITDs to which a given neuron responds
(9). Thus, the present results indicate that
prism-rearing causes the appearance of
two pharmacologically distinct popula-
tions of synapses mediating transmission
in separate functional circuits in the ICX
(22). These synapses may differ in the
relative numbers of NMDA and non-
NMDA receptors they contain or in other
factors that alter the relative amounts or
efficacies of NMDA and non-NMDA re-
ceptor currents (23). For instance, it is
possible that synapses mediating learned
responses may have pure NMDA receptor
pharmacology, like synapses observed re-

A B . C
- Learned &2 S -
ol AT | ‘ 21| sCNoxr-9
Et00 4 £ A " £ 120 1 p
B g0 € 100 PRy AA i €1
¢°\| 60 - E a Am E%AA ﬁ g
- 50 A =
] = A
2 40+ [ AGA @‘& K ]
3 c o A 5
5 20 o g
a % 2 »
N o AR é .50 2

20 0 20 40 60 80 20 0 20 40 60 &0

ITD (re. predicted normal, ps) ITD (re. predicted normal, ps) .
D _E
)
= Normal Learned | & = >
S 50 —_——— o 150 % 80 Greater
E 404 £ B g 0 blockade
® £ 100 R0 £ Ieghljearned
o 304 [] > S
N E @ 20
B 20 2 s o O
a -]
"3 b @ 20 Greater
@ 101 £ 0 X 40 blockade
X o 2 g Ia_lt_ I5\ormal
- = s
) 2 -s0 m %
[:4 -80

nN
o

4 60 80 100
Total response remaining (%)

Fig. 3. Effects of KYN and CNQX iontophoresis in the ICX on tectal ITD tuning; re., relative. (A and D)
Representative effects of KYN (triangles) and CNQX (squares) at two tectal sites. The effect of AP-5 at the
same sites is shown for comparison (open circles, dashed lines). Solid circles, control and recovery
periods. The typical effect of KYN was to block both normal and leamed responses equally. Though
CNQX preferentially blocked normal responses at.some sites, the magnitude of this effect was small, and
thus the representative site in (D) shows an equal blockade of normal and learned responses. Responses
during CNQX application were significantly reduced relative to control responses at this site (P < 0.005)
(26). (B and E) Relation between stimulus ITD relative to predicted normal ITD and response decre-
ment produced by KYN (triangles) or CNQX (squares), for all sites. KYN: r? = 0.024, slope = 0.002,
P =0.14. CNQX: r?2 = 0.117, slope = 0.004, P = 0.002 (regression line shown). (C) Summary of the
effects of KYN and CNQX on normal and learned responses. Neither KYN nor CNQX blocked learned
responses more than normal responses (Wilcoxon signed rank test, one-tailed, each P > 0.25). (F)
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