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Activation by Attention of the Human Reticular
Formation and Thalamic Intralaminar Nuclei

Shigeo Kinomura, Jonas Larsson, Balazs Gulyas, Per E. Roland*

It has been known for over 45 years that electrical stimulation of the midbrain reticular
formation and of the thalamic intralaminar nuclei of the brain alerts animals. However,
lesions of these sectors fail to impair arousal and vigilance in some cases, making the role
of the ascending activating reticular system controversial. Here, a positron emission
tomographic study showed activation of the midbrain reticular formation and of thalamic
intralaminar nuclei when human participants went from a relaxed awake state to an
attention-demanding reaction-time task. These results confirm the role of these areas of
the brain and brainstem in arousal and vigilance.

Electrical stimulation of the midbrain re-
ticular formation (MRF), an evolutionarily
ancient part of the mammalian brainstem
(Fig. 1), produces desynchronization in
electroencephalograms (EEGs) and awak-
ens and arouses animals (I). Electrocoagu-
lation of this area induces a comatose state
and the absence of EEG desynchronization
and behavioral arousal to sensory stimuli
(2). These observations led to the concept
of an ascending reticular activating system
and were corroborated by anatomical and
electrophysiological studies showing that
the MRF sends efferents to the intralaminar
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thalamic nuclei. These studies also showed
that the MRF and intralaminar nuclei,
when stimulated artificially or by sensory
stimuli, in concert evoked EEG desynchro-
nization and behavioral arousal and woke
up the experimental animals (3, 4).
However, it has been difficult to repro-
duce the electrocoagulation findings by
more refined methods that destroy only the
neuronal perikaryra of the MRF and not the
traversing axons (5). Whereas recordings
from MRF neurons have documented the
involvement of this part of the brainstem in
the transition between sleep and the awake
state (6, 7), direct evidence that the MRF
and intralaminar nuclei are tonically en-
gaged in maintaining a state of high vigi--
lance and attention has been lacking. We
therefore measured the regional cerebral
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blood flow (rCBF) in 10 normal volunteers
at rest and when they were engaged in two
difficult and attention-demanding somato-
sensory and visual reaction-time tasks. Our
hypothesis was that transition from an
awake relaxed state into a state of high
vigilance and attention that occurs during
reaction-time tasks would increase the syn-
aptic activity of the neurons in the MRF
and intralaminar thalamic nuclei and in-
crease the rCBF in these areas (8). Al-
though the MRF cannot always be localized
in positron emission tomography (PET)
scans, the midbrain tegmentum and the
intralaminar thalamic nuclei can be local-
ized stereotaxically and in high-resolution
magnetic resonance tomography of the
brain (9).

The rCBF was measured by PET (9) in
10 healthy volunteers (10), 9 right-handed

and 1 ambidextrous (11), under three con-
ditions: during rest (12), during a visual
reaction-time (vis-RT) task, and during a
somatosensory reaction-time (som-RT)
task. During rest, the participants were su-
pine with their eyes closed and held a re-
sponse key in their right hand. In the vis-
RT task, the participants fixated on a yel-
low circle on a monitor, which at random
time intervals suddenly increased in lumi-
nance. In response, they pressed the key
with their right thumb as soon as possible
after the increase in luminance (13). Dur-
ing the som-RT, the participants also had
their eyes open and fixated on the yellow
circle. Their task here was to press the key
as soon as possible after feeling the sudden

conditions were the open eyes, the fixation
on the yellow circle, and the increased vig-
ilance and attention associated with the fast
responses, the stimuli, and the motor re-
sponses (15).

Compared to the rest condition, the vis-
RT task and the som-RT task both in-
creased the rCBF markedly in the midbrain
tegmentum and the left intralaminar region
of the thalamus (Fig. 1). The activation of
the midbrain extended for 17 mm through-
out the right midbrain tegmentum contain-
ing the MRF (16) (Fig. 1). The thalamic
activation extended from 8 to 11 mm on
the left of the midline and from —16 ¢o
—22 mm posterior to the intercommissural
plane (Table 1). This corresponds to the

centro-median and centralis lateralis nuclei
of the intralaminar group (17). Although
the increases of rCBF were statistically sig-

indentation of a stylus on the right index
finger (14). Thus, the differences between
the rest condition and the reaction-time

vca vep
- Intralaminar nuclei

Centromedian

nucleus
ac-pc
X=9 mm
vca vep. Thalamus
H vca vcp
Red nucleus

Mesencephalic
tegmentum
ac-pc

X=-2 mm

Fig. 1. Activation of (A and B) the intralaminar thalamic nuclei and
(C through E) the midbrain tegmentum by increased attentional
demands in reaction-time tasks. The brain sections are shown
schematically in (G) and (H). The yellow and red colors indicate the
areas of overlap between significant activation in the different
conditions. In (A) is shown a sagittal section of the standard brain
format (9) @ mm to the left of the midline (x = 9) on which the
statistically significant activations are shown in red and yellow.
Only the picture elements for which the activations in som-RT and
vis-RT overlapped are shown (the image was produced by multi-
plying the cluster image of som-RT-rest and vis-RT-rest data; see
also Table 1). The image in (B) was produced by multiplication of
the cluster images of the som-RT and self-generated motor con-
dition data and the vis-RT and self-generated motor condition
data (x = 12). In (C) is shown a sagittal section of the brainstem
and brain 2 mm to the right of the midline (x = —2), showing the
overlap in the activations of the som-RT — rest data and the
vis-RT — rest data in the midbrain tegmentum. In (D) is shown a
sagittal section of the brainstem and brain (x = —2), showing that
the midbrain tegmentum was consistently more activated during
the reaction-time tasks than in the condition in which participants,
with their eyes open, pressed the response button. The image

was produced by multiplication of the cluster images of the som-RT — motor condition data and the vis-RT — motor condition data. In (E) is a horizontal section
9 mm below the intercommissural plane (z = —9), showing the overlap in the activations of the som-RT — rest data and the vis-RT — rest data. (F) Same section
as in (E), but showing the mean image produced from the anatomically standardized set of the 10 individual nuclear magnetic resonance images of the
participants in the reaction-time tasks. This image reveals the accuracy of the anatomical standardizations. Schematic sections of the standard brain of Human
Brain Mapping (23) are in (G) and (H), showing (G) the positions of the intralaminar nuclei and (H) the midbrain tegmentum (24).
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nificant in the right midbrain tegmentum
and left intralaminar nuclei of the thalamus
only, there were no significant differences
in rCBF between the right and left ho-
mologs of these structures (18). There were
no other rCBF increases in the brainstem,
but there was one increase in the left ven-
tral and lateral part of the thalamus in the
som-RT task. The magnitude of the increas-
es of rCBF in the midbrain tegmentum and
thalamic intralaminar nuclei (Table 1)
made it highly unlikely that the activation
of the right midbrain tegmentum and left
intralaminar nuclei of the thalamus were
significant because of the moderate general
increase of rCBF accompanying the vis-RT
and som-RT tasks (15).

Because there were behavioral differenc-
es between the rest condition and the reac-
tion-time conditions—that is, opening of
the eyes, fixating on the yellow circle, the
intention to respond, and the motor re-
sponse— one might argue that the midbrain
and intralaminar thalamic activations were
due to these conditions rather than to the
increase in vigilance and attention in the
reaction-time tasks. Therefore, and because
of the restrictions of radiation exposure, a
separate group of nine normal volunteers
were instructed and trained to press the
same response key with an average response
frequency of around 0.33 Hz (19). They
were told not to feel any time pressure, but
to press the key in a self-generated but
comfortable way. The rCBF was measured
while they looked at a homogeneous yellow
visual field and pressed the key.

Compared to a rest reference condi-
tion, this task was not associated with any
brainstem or thalamic activations. Fur-

thermore, when the image of the mean
rCBF during the self-generated key presses
was subtracted from those of the reaction-
time tasks, the right midbrain tegmentum
and left intralaminar thalamic nuclei re-
gions were significantly more activated in
the som-RT and the vis-RT tasks (P <
0.01 in both cases) (9) (Fig. 1). This made
it unlikely that the mesencephalic teg-
mental and thalamic intralaminar activa-
tions were associated with the opening of
the eyes or with the motor preparation or
the actual key press. Also, it is unlikely
that sensory stimulation such as that ex-
perienced in situations of moderate senso-
ry attention with no time pressure would
markedly increase tCBF in the midbrain
tegmentum and intralaminar thalamic nu-
clei. This interpretation is also supported
by other studies (20).

Thus, the rCBF in the midbrain tegmen-
tum and intralaminar domain of the thala-
mus is higher during high vigilance and gen-
eral attention than when participants are
awake and resting or when they are awake
with open eyes, performing self-generated
motor activity. Furthermore, these structures
are activated irrespective of the sensory mo-
dality (visual or somatosensory) that pro-
vides the alerting signal. Their activation
was associated with a diffuse increase of the
blood flow in the cerebral cortex of 3 to 4 ml
per 100 g of tissue per minute (ml/100
g/min), a result expected in situations of
high vigilance and attention (21). Because
of the coupling between rCBF and regional
synaptic activity, we submit that the activa-
tion of the mesencephalic tegmentum was
due to an increase in synaptic activity of the
MRF. Indeed, in cats MRF neurons directly

Table 1. Activation of brainstem and thalamus. Abbreviations are as follows: motor, self-generated
movement; CG, center of gravity; M/L, medial/lateral (negative value indicates right side, positive value left
side of the brain and brainstem); A/P, anterior/posterior (negative value indicates position anterior to the
tangent plane to the anterior commissure); and S/I, superior/inferior (negative value indicates position
inferior to the biocommissural plane). The coordinates of the CG are those of Human Brain Mapping (23)

in millimeters.
Coordinates of CG Volme ArCBF mean Mean
Task + SEM t
M/L AP S/ (mm3) )
ml/100 g/min value
W v @ (mi7100 g/min)
Right midbrain-tegmentum ]
a. Vis-RT-rest -2 -25 -8 609 174 +6.5 3.0
b. Som-RT-rest -3 —-25 -9 578 16.5 + 6.6 2.9
c. Vis-RT-motor -2 —23 -7 611 225 +76 2.9
d. Som-RT-motor —1 -23 -8 693 209 +7.2 2.8
Overlap between a and b -3 —-22 -9 430
Overlap between c and d -2 —22 -7 384
Left intralaminar thalamic nuclei
a. Vis-RT-rest 8 -21 5 300 159 +53 2.9
b. Som-RT-rest 8 —-18 3 312 16.5+ 58 2.4
c. Vis-RT-motor 9 -22 3 333 155+7.8 2.3
d. Som-RT-motor 8 —21 2 302 13.8+7.8 2.3
Overlap between a and b 8 -20 6 59
Overlap between ¢ and d 8 —-22 3 152
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activate thalamic intralaminar neurons with
identified cortical projections, and the tha-
lamic neurons increase their firing during
alertness (4, 7). Because our participants
were awake during the control condition,
the mesencephalic tegmental and thalamic
intralaminar nuclei thus might control not
only the transition from sleep to an alert
state, but also the transition from relaxed
wakefulness to high general attention and
the maintenance of general attention.
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Altered Reactivity of Superoxide Dismutase in
Familial Amyotrophic Lateral Sclerosis
Martina Wiedau-Pazos,* Joy J. Goto,* Shahrooz Rabizadeh,

Edith B. Gralla, James A. Roe, Michael K. Lee,
Joan S. Valentine, Dale E. Bredesenf

A subset of individuals with familial amyotrophic lateral sclerosis (FALS) possesses
dominantly inherited mutations in the gene that encodes copper-zinc superoxide dis-
mutase (CuZnSOD). A4V and G93A, two of the mutant enzymes associated with FALS,
were shown to catalyze the oxidation of a model substrate (spin trap 5,5'-dimethyl-
1-pyrroline N-oxide) by hydrogen peroxide at a higher rate than that seen with the
wild-type enzyme. Catalysis of this reaction by A4V and G93A was more sensitive to
inhibition by the copper chelators diethyldithiocarbamate and penicillamine than was
catalysis by wild-type CuzZnSOD. The same two chelators reversed the apoptosis-
inducing effect of mutant enzymes expressed in a neural cell line. These results suggest
that oxidative reactions catalyzed by mutant CuZnSOD enzymes initiate the neuro-

pathologic changes in FALS.

Amyotrophic lateral sclerosis (ALS), or
Lou Gehrig’s disease, is a motor neuron
degenerative disease that affects approxi-
mately 1 person in 10,000. About 10 to
15% of cases are familial (1), and 20 to 25%
of familial ALS (FALS) cases are associated
with dominantly inherited mutations in
SODVI, the gene that encodes human CuZn-
SOD (2). Initial studies of the FALS-asso-
ciated CuZnSOD mutants appeared to
demonstrate reduced enzymatic activity (3).
However, subsequent studies with trans-
genic mouse (4) and cell culture (5) models
of FALS indicated a dominant, gain-of-
function effect of the FALS-associated
CuZnSOD mutants. Moreover, yeast sodl
null mutants were rescued as efficiently by
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FALS-associated mutant human CuZnSOD
as by the wild-type (WT) human enzyme,
which indicated extensive activity of the
mutant proteins (5). Although these obser-
vations supported a gain-of-function effect
of the mutants, the nature of the function
gained has remained undetermined (1).

In addition to its activity as a SOD (6),
CuZnSOD catalyzes oxidation of substrates
by hydrogen peroxide (H,0,) at rates com-
petitive with its own oxidative inactivation
by the same reagent (7, 8). A convenient
substrate used to study this type of reaction
is the spin trap 5,5'-dimethyl-1-pyrroline
N-oxide (DMPO), which reacts with H,O,
to give its electron paramagnetic resonance
(EPR)-detectable hydroxyl adduct, DMPO-
OH, in a reaction catalyzed by WT CuZn-
SOD (9). We hypothesized that the FALS-
associated mutant CuZnSODs might en-
hance similar oxidative reactions of sub-
strates with H,O, because the locations of
the FALS-associated mutations in this en-
zyme suggest the possibility of increased
openness of the three-dimensional struc-
tures (3), which could conceivably allow
greater access of substrates to the active site.
In addition, in a neuronal cell culture mod-
el of FALS, mutant human CuZnSODs
[Ala* — Val (A4V) and Gly*? — Arg
(G37R)] increased apoptosis, whereas the
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