
hecause it 1s a~laptive to change 5-HT's effect 
on  the exc~tahillty of LG only in response to 
a pcrslstent change In the animal's social sta- 
tus. In thls case, these slow changes in 5-HT's 
effect could funct~on as part of the "memory" 
of recent agonlst lnteractlons: Too short a 
memory might lleeiilessly expose the animal 
to the risks of aggressive interactions that 
occur hctwccn strangers. 

W e  concl~ldc  that soc~a l  experlcnce can 
nlod~llate neural clrcult f~lnct lon hy con- 
t ro l l~ng the  effect of a neuromodulator on 
the  response of an  identified neuron. Pre- 
sumahly this type of neural plast~clty medi- 
ates the  an~mal ' s  soc~a l  adaptation by pro- 
d ~ ~ c i n g  experience- and context-dependent 
changes 111 the relatlve excltahil~ty of neural 
circu~ts.  These exc~tability changes wo~l ld  
translate ~ n t o  corresponding changes 111 the  
rc la t~ve frequenc~es w ~ t h  which dlffcrent 
behaviors are expressed. An~lna l s  differ III 

telnperalnent 130th in their groups and In- 
dlvldually over time; it is l ~ k c l ~ r  that the  
type of neuronal and ne~lra l  c i r c ~ ~ i t  changes 
reported here underlie thls sort of hchavlor- 
a1 plasticity. 
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Zinc-Induced Collapse of Augmented Inhibition 
by GABA in a Temporal Lobe Epilepsy Model 

Eberhard H. Buhl, Thomas S. Otis, lstvan Mody* 

In the kindling model of temporal lobe epilepsy, several physiological indicators of inhi- 
bition by y-aminobutyric acid (GABA) in the hippocampal dentate gyrus are consistent 
with an augmented, rather than a diminished, inhibition. In brain slices obtained from 
epileptic (kindled) rats, the excitatory drive onto inhibitory interneurons was increased and 
was paralleled by a reduction in the presynaptic autoinhibition of GABA release. This 
augmented inhibition was sensitive to zinc most likely after a molecular reorganization of 
GABA, receptor subunits. Consequently, during seizures, inhibition by GABA may be 
diminished by the zinc released from aberrantly sprouted mossy fiber terminals of granule 
cells, which are found in many experimental models of epilepsy and in human temporal 
lobe epilepsy. 

Synap t i c  inhibition in the lnalnmalian 
forebrain 1s pri~narily rncdiateci by G A B A  
actlng a t  ~ t s  v a r i o ~ ~ s  receptors (1 ,  2) .  It is 
not  known by how much the balance he- 
tween excitation and inh ih i t~on  has to be 
offset for pathological changes to occur. A 
r e d ~ ~ c e d  s v n a ~ t i c  ~nh ih i t ion  w111 favor 11v- , . 
perexcitabil~ty, a condition long associated 
w ~ t h  epilepsy (31.. Although In vitro studles 
of acute eollens~es have often relied o n  the 

L L 

cxpcri~nental  i~npairnlent of ~nh ih i t lon  hy 
G A B A  (3), the  fate of i nh ib~ t ion  hy  G A B A  
In c h r o n ~ c  cp~lepsy models and particularly 
in h ~ l l n a n  eplleps~cs remains unclear (3-6). 
A distinctive s n r o ~ ~ t i n e  of mossv fibers in the 
dentate gyrus 1s shared among hurnan tcm- 
poral lohe epilepsy (TLE) and several expcr- 
ilncntal epilepsy models (7-1 0). T h e  aber- 
randy sprouted rnossy f~bers  form recurrent 
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excitatory synapses w ~ t h  other granule cells 
hut may also contribute to the synaptic d r ~ v e  
onto  inh~hitory Interneurons (1 1 ). T h e  kin- 
dling model of TLE, In which seizures are 
induced by initially suhthrcshold elcctrlcal 
s t i rn~~ l i  delivered daily to l i~nhic  areas over 
several days or wccks, replicates rrany ana- 
tomlcal and pathological features, incl~lding 
the sprouting of mossy flbcrs as seen In 
human TLE 11 2 ) .  T h e  model 1s character- , , 

lzed by an  ctlhanced filtlctional ~ n h ~ h i t ~ o n  
hy G A B A  in the dentate gyrus (6 ,  13 ,  14),  
b ~ ~ t  there 1s n o  estllnate of the excitatorv 
drlr~e onto  the Inhibitory ~nterneurons.  

W e  measured the degree of glutamater- 
gic excitatory d r ~ v e  onto  specific Interneu- 
rons (1 5, 16) respons~hle for gencratmg 
spontaneous ~ n h ~ b l t o r y  postsynaptic cur- 
rents (sIPSCs) in dentate gyrus granule cells 
after kindling hy record~ng inhibitory cur- 
rents In the  whole-cell conflguratlon (1 7) 
at  the  reversal potentla1 (0 to $ 5  mV) of 
excitatory synaptlc events (18).  A t  this 
mc~nhrane  potential, sIPSCs could he dc- 
tected selectively (Flg. l A ) ,  whereas the  
excitatory drive onto  the interneurons re- 
lnalned intact and c o ~ ~ l d  be assessed by the 
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Fig. 1. Enhanced inhibi- A B 
tion of kindled granule 
cells through increased 
excitatory drive onto in- 
temeurons and through 
a diminished autoinhibi- 
tion of GABA release (A) 
for each cell, the average 
frequency wer 1 to 
2-min periods (dotted 
line) was measured at 

Time 

A Control c 11 ZI~C T 

three different time 
points: (i) in control 0.8 
ACSF, (ii) during CNQX- 
D-AP5 perfusion, and (iii) 

7- T = 105.5 rns (9.5 Hz) 

A 

+ 'i i 

r i _'e-? PA 
f 

-F----qloo La1 1 0' 102 103 
B 200pMZlm 100ms r = 79.3 ms (12.6 Hz) 

during perfusion of 0.6 1 8 f 
CNQX-D-AP5 plus TTX. Kindled Kindled 
In this kindled granule 0.4 I ! cmtd 
cell, slPsC frequency is l o 1  i d  lo3 lo4 
plotted versus time and lnterstlmulus Interval (ms) 

k, !002pA 
the horizontal bars indi- 
cate the perfusion of the various antagonists. (B) The ratios of the frequencies measured in CNQX-D-AP5 
and in CNQX-D-AP5 plus TTX were calculated relative to the frequency in control ACSF (considered to 
be 1.0). The changes in relative frequency are plotted for control (open bars) and kindled (shaded bars) 
cells. The number of cells is indicated at base of the bars. Asterisks denote significant difference from the 
previous perfusate, P < 0.01, two-tailed t test. (C) The magnitude and time course of presynaptic 
autoinhibition was assessed in paired-pulse experiments on monosynaptically evoked, isolated GAB& 
currents (25). The population data are plotted; PJP, (the amplitude of the subtracted test pulse divided 
by the amplitude of the conditioning response) is displayed as a function of varying interstimulus intervals 
(50 to 8000 ms). The maximal inhibition is significantly reduced (by 25 to 45%, P < 0.01, two-tailed t test, 
control n = 6, kindled n = 9) after kindling at each interstimulus interval except at the two longest intervals 
(5000 and 8000 ms). (D) Isolated monosynaptically evoked GAB& currents were similar in a control (top) 
and a kindled (bottom) granule cell recorded in the presence of 10 pM CNQX, 40 pM D-AP5, and 75 pM 
picrotoxin (1 7). Each trace is the average of three to five successive responses. 

Tlrne (ms) 

Fig. 2. Effect of bath-applied Zn2+ on mlPSC parameters in granule 
cells of control animals. (A) The left panel shows a 10-s recording of 0  

0 2 4  6 8 1 0  
mlPSCs in a granule cell with the interevent-interval histogram of the ~ u a y  time comtant (mt) 

same recording period to the right. Because of the chloride loading of 
the cells, IPSCs appear as inward currents. Mean mlPSC frequency during the control period was 9.5 Hz. 
(B) After bath application of 200 KM ZnCI, dissolved in ACSF, the frequency of mlPSCs increased to 12.6 
Hz. (C through E) Cumulative probability plots of granule cell mlPSC parameters during control conditions 
and after bath application of 200 pM Zn2 '. In control granule cells (n = lo), none of the measured 
parameters, such as amplitude (C), rate of rise (D), and decay-time constants (E) was significantly altered 
(compartson of median values, two tailed t test, P > 0.01). 

decrease in event frequency caused by per- 
fusing the ionotropic glutamate receptor 
antagonists 6-cyano-7-nitro-quinoxaline- 
2,3-dione (CNQX, 10 pM) and D-2-amino- 
5-phosphonovalerate (D-AP5, 40 pM). 
Such treatment causes a reduction of less 
than 10% in the frequency of sIPSCs (18, 
19). Consistent with a weak basal sponta- 
neous excitatory drive onto intemeurons in 
control slices (Fig. lB), the average ratio of 
sIPSC frequencies observed after and before 
the CNQX + DAP5 perfusion was 1.02 2 
0.01 (n = 10 slices). In contrast, after kin- 
dling, perfusion of CNQX + D-AP5 caused 
a significantly more-pronounced reduction 
(0.78 2 0.1; n = 11 slices; P < 0.01, 
Student's t test) in the frequency of inhib- 
itory events (Fig. 1, A and B). This finding 
can best be explained by an enhanced ex- 
citatory drive onto the intemeurons respon- 
sible for generating spontaneous events in 
kindled granule cells. The anatomical sub- 
strate for this enhanced excitatory drive 
may be the sprouted mossy fibers that in- 
vade infra- and supragranular regions 
known to be abundant in interneuron pro- 
cesses (20). 

Going a step beyond the excitatory 
drive onto the interneurons in the epilep- 
tic dentate gyrus, we also wanted to know 
what fraction of the spontaneous GABA 
release was related to invasion of the in- 
hibitory terminals by action potentials (2, 
18, 19, 21 ). In control cells, the frequency 
of miniature IPSCs (mIPSCs) recorded af- 
ter perfusion of the Na+ channel blocker 
tetrodotoxin [TTX, 1 pM (18, 19, 21)] 
was 60 ? 9% (n = 6 slices) of that record- 
ed in the presence of CNQX + D-AP5 
alone. However, in kindled preparations, 
once the excitatory amino acid receptor 
antagonists lowered sIPSC frequency, it 
could not be reduced further by perfusing 
TTX onto the slices (Fig. 1, A and B). 
Hence, in the absence of an excitatory drive 
onto the intemeurons, most of the sIPSCs 
in kindled granule cells seem to result from 
a release of GABA that is independent of 
action potentials. 

The release of GABA from inhibitory 
terminals is also under the control of pre- 
synaptic GABAB autoreceptors (22). These 
receptors can inhibit GABA release by as 
much as 40 to 60%, producing an activity- 
dependent disinhibition (23). An augment- 
ed presynaptic autoinhibition of GABA re- 
lease, especially upon sustained firing of 
intemeurons, could reduce dramatically the 
efficacy of inhibition during seizures (23). 
In kindled dentate gyri, we observed the 
opposite: The paired-pulse inhibition of 
monosynaptically evoked IPSCs, a para- 
digm used to measure activation of GABAB 
autoreceptors (24, 25), was significantly re- 
duced (Fig. 1C). Reduced autoinhibition in 
epilepsy may guarantee a steady release of 
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GABA with repeated presynaptic activity, 
particularly during the sustained activity ac- 
companying seizures of GABA-transmitting 
terminals. Contrasted with the diminished 
activation of presynaptic GABAB receptors 
after kindling, stimulus-evoked IPSCs me- 
diated by GABAB receptors (25) were com- 
parable in control and kindled granule cells 
(Fig. ID). 

These physiological findings appear to 
be consistent with enhanced inhibition me- 
diated by GABA, receptors in the epilep- 
tic-that is, presumably hyperexcitable- 
dentate gyrus. With an augmented inhibi- 
tion, how can the balance of excitability 
ultimately tip in favor of excitation and 
produce epilepsy? Excitatory neurotransmis- 
sion mediated by the N-methyl-D-aspartate 
type of glutamate receptors is clearly en- 
hanced after kindling (26), but other key 
factors may undermine the dampening ef- 
fect of an augmented inhibitory activity. 

We tackled this issue by examining an- 
other possible pathophysiological role of 
the massive and aberrant mossy-fiber 
sprouting characteristic of the epileptic 
dentate gyrus. Mossy fibers are loaded with 
Zn2+ that can be released on stimulation 
and that is estimated to reach local concen- 
nations of a few hundred micromoles per 
liter (27). Sprouted to supragranular sites, 
mossy fiber boutons still contain Zn2+ (7, 
10) that could be released onto perisomatic 
and proximal dendritic regions of granule 
cells where little if any Zn2+ is being re- 
leased normally under nonepileptic condi- 
tions. These regions are precisely where 
spontaneous inhibitory events originate on 
granule cells (16). Because Zn2+ inhibits 
certain types of GABA, receptors (28), 
mainly during early development (29), we 
considered whether it may also inhibit 
GABA, receptors of granule cells. First we 
examined the effect of Zn2+ on mIPSCs in 
control neurons. Perfusion of 200 pM 
ZnC1, had no effect on the amplitude, de- 
cay-time constant, or rates of rise of mIPSCs 
(Fig. 2, n = 10). The frequency of mIPSCs 
was moderately increased by Zn2+ (12 t 
5%; n = 10; P = 0.038, two-tailed t test), 
an effect that lasted beyond the wash, per- 
sisting in some cells for as long as 40 min 
after the return to the control perfusate. 
These findings reflect known presynaptic 
effects of Zn2+ (30) and are consistent with 
the presence of Zn2+-insensitive GABA, 
receptors on control granule cells. 

If GABA, receptors were similar in con- 
trol and kindled granule cells, then contrary 
to our original hypothesis, Zn2+ release 
from sprouted mossy fibers could not cause 
a diminished inhibition in the epileptic 
dentate gyrus. The hypothesis could still be 
valid if marked differences were present in 
the sensitivity of control and "epileptic" 
GABA, receptors to Zn2+. Trying to un- 

ravel possible differences in the Zn2+ sen- 
sitivity of control and epileptic GABA, 
receptors, we examined the effect of Zn2+ 
on mIPSCs recorded in slices obtained from 
kindled animals. In contrast to its effect in 
controls, Zn2+ produced a striking effect on 
mIPSCs recorded in kindled granule cells. 
Perfusion of ZnC1, (200 pM) blocked 
mIPSCs in kindled neurons, resulting in a 
significant decrease in mIPSC frequency 
(56 2 8%; n = 18; Fig. 3, A and B). The 
presynaptic effect of Zn2+, commonly seen 
as a lasting increase in the frequency of 
mIPSCs in control neurons, was masked in 
kindled cells and could only be observed 
after the wash of ZnC12 (Fig. 3C). Thus, the 
reduction of mIPSC frequency by perfusion 
of ZnC12 must have resulted solely from a 
reversible antagonism of epileptic granule- 
cell GABA, receptors by Zn2+ (Fig. 3, D 
through H). This antagonism was charac- 

terized by significantly (P << 0.01, paired 
two-tailed t test) reduced median ampli- 
tudes (by 33 t 4%, from 57.9 + 3.3 to 38.3 
+ 3.3 PA; n = 18; Fig. 3, D and G), rates of 
rise (by 35 + 5%, from 261 2 16 to 168 + 
15 pA/ms; n = 18; Fig. 3, E and H, and 
faster decay-time constants (by 20 2 5%, 
from 3.48 + 0.08 to 2.82 t 0.22 ms; n = 
18; Fig. 3, F and H) of the mIPSCs recorded 
in the presence of Zn2+ in kindled neurons. 
We also simulated the effects of Zn2+ on 
mIPSCs (31). These simulations reflected 
the possibility that Zn2+ may block the 
epileptic GABA, receptor channels (32) 
through a noncompetitive mechanism (33). 

The most obvious explanation for the 
Zn2+ sensitivity of kindled synaptic 
GABA, receptors would be the possible 
kindling-induced loss of y subunits. How- 
ever, because of the increased benzodiaz- 
epine binding after kindling (34), this pos- 
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Fig. 3. Block of mlPSCs by bath-applied Zn2+ in a kindled granule cell. (A) The mean frequency of 
mlPSCs in control ACSF was 13.1 Hz. (B) Perfusion of 200 pM ZnCI, resulted in a dramatic reduction (to 
27% of control, or 3.5 Hz) of mlPSCfrequency. (C) Theeffect of Zn2+ was reversible. Moreover, indicating 
a long-term presynaptic effect comparable to that observed in controls, the frequency of mlPSCs more 
than doubled after washout and remained elevated for the remainder of the experiment (>30 min). The 
leftmost panels in (A) through (C) show 10-s consecutive recordings of mlPSCs in the presence of 
ionotropic glutamate antagonists. The corresponding panels to the right show the respective interevent- 
interval histograms fitted with exponential distributions. Cumulative probability plots of mlPSC parame- 
ters taken from the same cell illustrated in (A) through (C) indicated that Zn*+ resulted in significant 
reduction of mlPSC amplitudes (D), rates of rise (E), and decay-time constants (F), indicating a postsyn- 
aptic action on GABA, receptors in the granule cell. The effects on mlPSC parameters were readily 
reversible after superfusion with control ACSF. (G) After events had been sorted according to their rates 
of rise, those (21 5%) scattered around the median were averaged and superimposed. Note the Zn2+- 
induced reversible reduction of the average mlPSC. (H) The superimposition of normalized averages on 
a different time scale shows that Zn2+ perfusion reversibly reduced the mlPSC rate of rise and increased 
the rate of decay, consistent with an action of Zn2+ at synaptic GABA, channels. 
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sibility seems unlikely. Nel~ertheless, we 
tested the sensit~vity of mIPSCs recorded in 
kindled preparations to the benzodiazepine 
agonist zolpidem. As in controls (18, 31 ), 
perfusion of zolpidem (10 khl) produced a 
significant lengthening (327 -t- 43%) of 
lnIPSC decav-time constants in kindled 
granule cells i n  = 6),  consistent wlth the 
Dresence of f~~nct ional  benzodiazenine re- 
ceptors after kindling. The absence of y 
subunits, which are critical for benzodiaz- 
epine sensitivity (28), is colnlnonly associ- 
ated with the blocking effect exerted by 
Zn2+ on GABAA receptors during early 
ontogeny (29). Therefore, the preserved 
benzodiazepine sensitivity after kindling 
must reflect the continued presence of y 
subunits in epileptic GABAA receptor 
channels (35); the Zn2+ sensitivity of these 
recevtors must have arisen desoite the func- 
tional y subunits. Other subunits may also 
regulate the Zn2+ sensitivity of GABAA 
receptors: Some benmdiazepine-sensitive 
receptors are inhibited by Zn2+ (33), possi- 
bly through certain CY subunits or the 6 
subunit (36). 

In summary, t ~ v o  additional components 
of inhibition seem to compensate for hyper- 
excitability in the epileptic dentate gyrus: 
(1) an increased excitatorv drive onto inhib- 
itory interneurons, and (ii) a decreased au- 
toinhibition of GABA release. Yet this en- 
hanced inhibition by GABA ultimately 
collapses in the kindled hippocampus, and 
Zn2+ inav be vivotal in this breakdown. 
During lllassive neuronal activity, Zn2+ re- 
leased from sprouted inossy fibers aroi~nd 
granule cell bodies and proximal dendrites 
(37) could cause a significant impairment 
in the function of epileptic GABAA recep- 
tors that are sensitive to Zn2+. This Zn2+- 
induced reduction of inhibition by GABA 
may promote the spread of epileptic activ- 
ity. Furthermore, if Zn2+-sensitive GABAA 
receptors were present in the normal adult 
brain, the activity-dependent Zn2+ release 
from neighboring excitatory boutons (27) 
may explain the intense predisposition of 
certain brain structures to epilepsy (3). 
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both weights and activation values of the - 
neurons (and the  fust log q h ~ t s  that de- 
scrlhe the s toc l~as t~c  process) ~nf luence the  

Analog Computational Power 

Response: Peter Shor ( 1 )  and Richard Y. 
Kain (2 )  recently commented o n  my report 
"Computation Beyond the  Turing Limit" 
(3). Shor questions the  nature of the  advice 
used in analog computation, or equivalent- 
ly, the  real weights in the  neural networks 
model. H e  suggests that they must either be 
programmed, or be random, or be physical 
constants, and notes problems in all these 
cases. 

First, by definition, the constants are not 
necessarily programmable, because they are 
general, not only computable, real numbers. 

Second, the  constants are inherently dif- 
ferent frorn random numbers. Rather, they 
compose the  real characteristics of a system. 
T o  exemplify this, consider the  logistic map 

xi,+ = ax,,(l - x,,) 

(4) ( the  state of the system at time n is 
represented by x,,). Here a minute change in 
the  constant a rnay result in a qualitative 
change in  the motion, such as period dou- 
bling or a transition frorn periodic to cha- 
otic motion. Independent of this, let me 
illuminate random processes. Computer sci- 
entists often model a random process as a 
coin that has a success ( to  fall 
o n  "heads") of 112. Probabilistic Turing 
machines that use a coin with (exactly) 112 
success probability compute the  class BPP 
(which, as Shor says, is believed to  be no  
stronger than what deterministic Turing 
machines compute efficiently). However, I 
have shown (5) that if the  success proba- 
bility of the  coin is a real number, the 
resulting class is again super-Turing! (The  

networks in  this case compute the  class 
BPP/log, which is included in  P/poly.) T h e  
exact probability of the  coin is not known 
to the  Turing machine (nor the  underlying 
process) that utilizes it and can only be 
approximated by a chain of flips; yet, it still 
adds nower to the classical model. 

Third, the  weights in neural network 
models can be thought of as modeling the  
physical characteristics of a specific system. 
Shor's cotnment that the  current measure- 
ments of physical constants are poor is cru- 
cial if one wants to  build a general analog 
computer directly from the description; the 
design of such a computer is an  open prob- 
lem. However, this is irntnaterial 
for the  mathematical modeling of an  analog 
computation of nature. 

In  a natural analog computation process, 
one starts from initial conditions that con- 
stitute the  (finitely describable) input, and 
the  system evolves according to the  specific 
equations of motion to its final position, 
which constitutes the  output. T h e  evolu- 
tion is colntrolled by the  exact equations of 
motion with the exact physical constants. 
T h e  analog physical systetn "solves" the 
equations of motion exactly. For example, 
planetary motion is used to  measure time 
with very high precision although we know 
the  gravitational constant G only to two 
digits. T h e  planets, of course, revolve ac- 
cording to the  exact value of G,  irrespective 
of its measurement by humans. 

Althoueh the  networks are defined with " 
unbounded precision, up to the qth  step of 
the  cotnputation, only the  first O(q) bits in 

result (6). This property of neural networks 
is identical to that of chaotic systems, sug- 
gesting that neural networks are indeed nat- 
ural models of analog physical dynatnics. 

In  his comment, Kain does not mention 
the  irnporta~lce of constraints in  computa- 
tion as established by Karp (7) and others. 
T h e  itnposition of constraints is one of the  
main develonments that revolutionized the  
classical theory of computation from dis- 
crete rnathetnatics into the  modern corn- 
plexity theory of realistic machines. Readers 
interested in pursuing some of the  issues 
raiseit by Kain (for example, the  difference 
between oracle and advice machines, as 
well as complexity) are referred to (8) for 
their nrecise descrintion. T o  summarize, 
both under resource constraints (complexi- 
ty) and in their absence (computability), 
my model exceeds the  Turing power, and 
thus rnay be referred to as a "super-Turing" 
one. 

Hawa T .  Siegelmann 
Technion Israel Institute of Technology, 

Technion C i t y ,  Haifa 33000, Israel 
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