
this response (25) or to lnutatlons in 
TGF-@ receptors (26).  Transfer of chromo- 
some 18 has been s h o ~ v n  to  part~ally restore 
TGF-@ responsiveness to a cancer cell line 
127), consistent 1 ~ 1 t h  the  notion that this 
ch ro~noso~ne  carries a gene involved in 
TGF-@-induced grolvth s~~ppression. T h e  
relationship of the  signal~ng pathways ini- 
t ~ a t e d  by TGF-@ and other members of the  
TGF-@ superfam~ly, however, 1s unclear. 
S tud~es  of the  DPC4 pathway and its asso- 
ciation with members of the TGF-@ super- 
familv in nancreatic carclnolna anci other 
model systklns should he instruct~ve for the 
further ~~nders tanci~ng of the role of DPC4 
in human neoplasia. 
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rad-Dependent Response of the chkl-Encoded 
Protein Kinase at the DNA Damage Checkpoint 

Nancy C. Walworth* and Rene Bernards 

Exposure of eukaryotic cells to agents that generate DNA damage results in transient 
arrest of progression through the cell cycle. In fission yeast, the DNA damage checkpoint 
associated with cell cycle arrest before mitosis requires the protein kinase ~ 5 6 " ~ " ' .  DNA 
damage induced by ultraviolet light, gamma radiation, or a DNA-alkylating agent has now 
been shown to result in phosphorylation of ~ 5 6 " ~ " ' .  This phosphorylation decreased the 
mobility of ~ 5 6 " ~ " '  on SDS-polyacrylamide gel electrophoresis and was abolished by a 
mutation in the ~ 5 6 " ~ " '  catalytic domain, suggesting that it might represent autophos- 
phorylation. Phosphorylation of ~ 5 6 " ~ " '  did not occur when other checkpoint genes were 
inactive. Thus, ~ 5 6 " ~ " '  appears to function downstream of several of the known Schiz- 
osaccharomyces pombe checkpoint gene products, including that encoded by rad3+, a 
gene with sequence similarity to the ATM gene mutated in patients with ataxia telangi- 
ectasia. The phosphorylation of ~ 5 6 " ~ " '  provides an assayable biochemical response to 
activation of the DNA damage checkpoint in the G, phase of the cell cycle. 

Proliferating Pukaryotic cells arrest pro- 
gresslon through the  cell cycle in response 
to D N A  damage ( I ) .  Failure to repair dam- 
aged D N A  can result In the  propagation of 
mutations or damageci chromoso~nes anci, 
therefore, may contribute to genetic 1nsta- 
b i l~ty  and cancer (2 ,  3).  T h e  mechanism 
respons~ble for monitoring the  integr~ty of 
the  genorne and preventing progression 

through the cell c) cle In the  event of D N A  
da~naee  has been descr~bed as the  D N A  

damage checkpoint (3).  T h e  signal trans- 
duction pathway that c o ~ ~ p l e s  detect1011 of 
D N A  damage to control of progression 
through the  cell cycle has yet to he eluci- 
ciateci. Several sadlation-se11sit1~7e mutants 
(rad m ~ ~ t a n t s )  of both the buciiiing yeast 
Snccharomyces cerevisiae and the fission 
yeast Sch~~osncchnromyces pombe have been 
icient~f~ed (3-8). These mutants ciefine 
components of the  checkpoint pathway be- 
cause thev are unable to arrest the  cell cvcle 
when DNA is ciamaged (3-8). 

Division of Molecular Carcinogeness, Netherlands Can- W h e n  present in lnultlple coples per 
cer Institute. Plesmanlaan 121. 1066 CX Amsterdam. cell, the ch/tI .encoded protein kinase (6)  
Netherlands can suvvress the  growth defect assoc~ateci 

& & 

whom be at ~71th  part~cular mutant alleles of the gene 
present address. Depariment of Pharmacology. UMD- 
NJ-Robert Wood Johnson Medical School, 675 Hoes that encocies p?4'"'', a h~gh ly  conserved 
Lane, Piscataway. NJ 08854-5635. USA cycl~n-dependent kinase that governs cell 
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cycle progression in fission yeast (9). Al- 
though p56chk' is not essential for vegeta- 
tive growth under normal laboratory condi- 
tions, it is essential for cell survival if DNA 
is damaged by ultraviolet (UV) or gamma 
radiation or by limiting the activity of DNA 
ligase (6, 7). The chkl gene was cloned on 
the basis of its ability to complement a 
radiation-sensitive mutant, rad27.Tl.5 (7). 
The p56'hk' protein appears to be required 
for cell cycle arrest rather than repair of 
damaged DNA (6). Cells that lack p56'hk1 

enter mitosis with damaged DNA and sub- 
sequently die (7). 

To  facilitate studies of the p56chk' pro- 
tein, we introduced three copies of a se- 
quence encoding an epitope (1 0) that cor- 
responds to a portion of the influenza virus 
hemagglutinin protein (HA epitope) imme- 
diately upstream of the chkl+ stop codon. 
This chkl :ep allele was introduced as the 
sole copy of chkl in the genome by homol- 
ogous recombination at the chkl locus (Fig. 
1A) (1 1 ). The HA epitope allows detection 

Fig. 1. Functional substitution of wild-type chkl+ by A H3 
epitope-tagged chk7+. (A) Construction of a strain 
expressing solely epitope-tagged chkl +. A sequence x chk1:ep , 
encoding three tandem copies of the HA epitope (3 X STOP 

H3 H3 BI 5-FOA' 
HA) was inserted immediately upstream of the stop ----a ura4 +-&--l-ura4-~18 
codon of chkl+ (7 1). A 3.5-kb Hind I l l  (H3) genomic chkl ::ura4 chkl::ura4 

fragment encoding the epitope was introduced into a 
strain harboring a deletion of chkl (NW158; h+  H3 61 1 H3 El 5-FOAR 
chkl::ura4 ura4-Dl8 leu7-32 ade6-276). The - - ' - - - v - - - ' - - u r a 4 - D 1 8  

chkl::ura4 strain is sensitive to 5-fluoro-orotic acid chk1:ep chk1:ep 

(5-FOAS) because of expression of the ura4 gene used B 1 2 C 
to generate the chkl deletion (32). Replacement of the 
chkl::ura4 allele by the chk1:ep allele rendered cells 
resistant to 5-FOA (5-FOAR) because of loss of func- 97 
tional ura4. Transformants resistant to 5-FOA were 69 
selected, and integration of the chk1:ep allele was con- 
firmed by Southern (DNA) blot analysis. A Bfr I site (61) 46- - chklC 
that is lost in the disruption allele was regained in the - chk1:ep 
replacement with chkl:ep, resulting in the generation -- chkl::ura4 
of a 3.9-kb fragment. (B) Detection of the chk1:ep- 30- '0 15 30 45 60 75 90 
encoded protein, p56Chk7:eP, by protein immunoblot UV dose (Jlm2) 
analysis. A strain containing the chk1:ep allele 
(NW222; h - chk1:ep ade6-216 leu1 -32) (lane 1) and a strain containing the wild-type chkl+ allele (SP6; 
h-  leu7-32) (lane 2) were lysed, and proteins from total extracts were separated on an 8% SDS- 
polyacrylamide gel and transferred to nitrocellulose. lmmunoreactivity with antibody 12CA5 was revealed 
by enhanced chemiluminescence (33). The positions of molecular size standards (kilodaltons) are indi- 
cated. (C) Resistance of cells expressing the chk1:ep allele to DNA damage generated by UV light. A 
wild-type strain (chkl+), achk1:ep strain, and a chkl:ura4 strain were grown to mid-log phase. Portions 
of the cell suspension were diluted and plated onto agar plates, which were allowed to dry and exposed 
to UV light at various doses. Survival relative to unirradiated controls was determined after 3 days 
incubation at 30°C. Data are means t SD of plates prepared in triplicate. 

Fig. 2. Modification of ~ 5 6 ~ " ~ ' : ~ ~  in response to A B 
DNA damage, but not to inhibition of DNA replica- WdOse (Jim2): Gamma radiation (Gy) 

tion. (A) Modification of p56chk7:eP in response to 'Irne ko  (m'"' =. Q - @oe9b56' -- kD o 4 z 5 i O  TO 

UV light. Strain NW222 was grown to mid-log 69- 97- "- . -.-. 
phase, after which portions of cell suspension 
were plated on YEA agar plates. Cells were ex- 46- 

- 69- 
--I 

~ > posed to UV light at a dose of 15 J/m2, collected 46 - 
from the plate by resuspension in YEA liquid, and 
incubated for 0 to 60 min. Control cells (0 J/m2) c M M S  D Time (hours) 

-- - 
were treated in the same manner but were not o 0~Ch4 O ~ 0 5  k~ o , z 9 
exposed to UV light. Lysates were prepared and 

97 - 97 - 
subjected to immunoblot analysis (33). (B) Modifi- 
cation of ~ 5 6 ~ ~ ~ ' : "  in response to gamma radia- 69 - ---- 69- 

tion. Strain NW222 was grown to mid-log phase, 
afterwhich portions of cell suspension were trans- 46- 46- 

ferred to plastic tubes and exposed to various 
doses of gamma radiation from a 137Cs source at a dose rate of 1 Gy/min. Cells were incubated for 15 
min after completion of irradiation, and then lysates were prepared for irnmunoblot analysis (33). (C) 
Modification of p56*k7:" in cells treated with the DNA-alkylating agent MMS. Strain NW222 was grown 
to mid-log phase, after which portions of the cell suspension were incubated for 60 min in the presence 
of the indicated concentrations of MMS. Cells were then harvested and lysates prepared for irnrnunoblot 
analysis (33). (D) Lack of effect of hydroxyurea-induced inhibition of DNA synthesis on modification of 
p56Chk7'eP. Strain NW222 was grown to mid-log phase, after which hydroxyurea was added to the culture 
at a final concentration of 12 rnM. Cells were incubated for the indicated times and then harvested for 
imrnunoblot analysis (33). 

of p56'hk' by imrnunoblot analysis (Fig. 1B) 
and did not interfere with the ability of 
p56'hk' to impart resistance to UV irradia- 
tion (Fig. 1C). 

The p56C"':ep protein was modified in 
response to DNA-damaging agents includ- 
ing UV light, gamma radiation and a DNA- 
alkylating agent, methyl methanesulfonate 
(MMS) (Fig. 2, A to C). Reducing the 
activity of DNA ligase also resulted in mod- 
ification of p56'hk':eP (12). The modifica- 
tion of p56chk'.ep resulted in a decrease in 
the apparent mobility of the protein on 
SDS-polyacrylamide gel electrophoresis. 
The mobility shift occurred in cells treated 
with cycloheximide, suggesting that it is the 
result of posttranslational modification 
(13). Modification of p56chk':eP is a rapid 
and sensitive cellular response to DNA 
damage. The modification occurred within 
15 min of exposure to UV light or gamma 
radiation and at doses that were not lethal 
to wild-type cells (>80% survival). For ex- 
ample, modification of p56chk':ep was appar- 
ent at a dose of 1 Gy of gamma radiation, 
whereas 500 Gy is required to kill 50% of 
wild-type fission yeast cells (7). The fact 
that p56c"':ep was modified at low doses of 
radiation is consistent with the observation 
in S .  cerevisiue that a single double-strand 
break is sufficient to induce transient cell 
cycle arrest (14). 

Although the function of p56chk1 is nec- 
essary for cell cycle arrest in response to 
DNA damage, cells that lack p56c"' func- 
tion are capable of cell cycle arrest when 
DNA replication is inhibited. Therefore, 
the checkpoint that prevents the onset of 
mitosis in cells that have incompletely rep- 
licated DNA appears to operate in a 
chkl ::ura4 strain (6). To  determine wheth- 
er the modification of p56c"'"P is specific to 
the DNA damage checkpoint, we exposed 
the p56'hk':eP strain to hydroxyurea in order 
to inhibit DNA replication. After 3 hours 
of exposure to hydroxyurea, the septation 
index of the cells had decreased to <2%, 
indicative of cell cycle arrest (15). Little of 
the modified form of p56'hk':eP was obsewed 
under these conditions (Fig. 2D). These 
observations suggest that modification of 
p56c"':eP is a cellular response to DNA 
damage, not to cell cycle checkpoints or 
cell cycle arrest in general. 

The importance of catalytic activity for 
p56c"' function was investigated by chang- 
ing (1 6) the conserved lysine residue in the 
adenosine triphosphate binding site of the 
catalytic domain (1 7) to an alanine (K38A). 
The complementary DNA (cDNA) encod- 
ing the epitope-tagged mutant protein was 
expressed from an exogenous promoter (1 8) 
to provide the sole source of p56'hk' in a 
strain with a disrupted chromosomal copy 
of chkl. Both the tagged wild-type and the 
tagged K38A mutant proteins were ex- 
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pressed equally well and were equally stable 
at steady state. Exposure of cells to UV 
light, MMS, or gamma radiation resulted in 
a shift in the mobility of the wild-type 
protein but not in that of the K38A mutant 
(Fig. 3A), suggesting that the kinase activ- 
ity of p56'hk1:ep is required for the mobility 
shift. The simplest explanation for this ob- 
servation is that the mobility shift results 
from autophosphorylation of p56chk':ep and, 
therefore, cannot occur when the kinase 
activity is reduced. Alternatively, the ki- 
nase activity of p56chk':ep may be required 
for phosphorylation of a downstream target, 
which, in turn, results in modification of 
~ 5 6 ' ~ ~ ' : ' ~ .  

The wild-type and mutant cDNAs were 
tested for the ability to complement the UV 
sensitivity of a chkl::ura4 strain. The sur- 
vival of chkl::ura4 cells expressing the wild- 
type cDNA was approximately equivalent 
to that of a wild-type strain with an intact 
chkl+ gene (Fig. 3B). In contrast, cells ex- 
pressing the K38A mutant survived less 
well (Fig. 3B). The function of p56'hk' in 
sunrival after exposure to UV light is thus 
compromised by mutation; modification of 
p56chk1 therefore likely reflects a relevant 
change in p56'hk1 function that is important 
for the cellular response to DNA damage. 
However, the precise role of p56chk' kinase 
activitv in the activation of the check~oint 
requires further analysis, because the K38A 
mutant increased survival slightly relative 
to a chkl::ura4 strain carrying an empty 
vector (Fig. 3B). This observation raises the 
possibility that autophosphorylation may 
enhance p56chk' function but may not be 
essential. In these ex~eriments. the amount 
of protein expressedL from the' cDNA was 
approximately three to four times the 
amount of protein expressed from the 
genomic chk1:ep locus (19). Autophospho- 
rylation of p56'hk' may allow it to interact 
with downstream targets of the checkpoint 
pathway or may simply increase the activity 
of p56chk'. In either instance, overproduc- 
tion of unphosphorylated p56"k' may sub- 
stitute. These possibilities are consistent 
with the obsenration that marked overpro- 
duction of p56chk1 results in cell cycle arrest 
that is not accompanied by a shift in the 
mobility of the protein (20, 21 ). Alterna- 
tively, the K38A mutant may retain low 
residual kinase activity, as has been shown 
for other protein kinases (22). Although no 
detectable alteration in the mobility of 
p56chk1:eP was apparent, it is possible that 
overexpression of a partially active kinase 
partially substitutes for wild-type p56chk1. 

To confirm that the mobility shift of 
p56chk1:eP results from phosphorylation, we 
treated lysates with lambda protein phos- 
phatase (23) and assayed them for mobility 
by immunoblot analysis (Fig. 3C). The mo- 
bility of p56chk1:eP from cells that had not 

been exposed to UV light was unaffected by 
treatment with the phosphatase. The mo- 
bilitv of ~56 '~~ ' : 'P  from cells that had been , L 

exposed to UV light was increased after 
treatment with the ~hos~hatase  to an ex- 
tent identical to thst 01 the unmodified 
form, suggesting that p56chk':eP is modified 
by phosphorylation. 

Several S. pombe mutants have been 
characterized that, like chkl::ura4, are un- 
able to arrest the cell cycle in response to 
DNA damage at the G, checkpoint. These 
mutants include radl, rad3, rad9, radl7, 
rad26, and husl (4, 5). The epistasis of 
these mutants with chkl was investigated by 
crossing the chk1:ep allele into mad mutant 
backgrounds. The strains were then tested 
for the response of p56chk':eP to DNA dam- 
age induced by UV light or gamma radia- 
tion. In each instance tested, the modifica- 
tion of p56'hk':eP did not occur in the mad 
mutant background (Fig. 4). These obser- 
vations suggest that the radl, rad3, rad9, 
radl7, and rad26 gene products function 
upstream of p56'hk' and that modification 

of p56'hk1 is dependent on the function of 
these genes. Moderate overexpression of 
chkl+, in amounts that do not appear to 
affect the timing of mitotic entry, partially 
restores the abilitv of a radl-1 mutant to 
survive exposure to DNA damage (6). 
This observation is consistent with the 
suggestion that p56'hk' functions down- 
stream of radl. Although the radl, rad3, 
rad9, radl7, and rad26 genes have been 
sequenced (7, 24), their roles in the G, 
DNA damage checkpoint remain to be 
determined. 

Modification of ~ 5 6 ' ~ ~ ' : ' P  was detected 
in the background of a radiation-sensitive 
mutant in which the G2 checkpoint is 
intact (Fig. 4). A radl3 mutant is ineffi- 
cient in the removal of 6-4 photoproducts 
and cyclobutane dimers after UV treat- 
ment (25). The UV sensitivity of the 
strain is attributable to its defect in DNA 
repair; it undergoes cell cycle arrest after 
DNA damage, indicating that the check- 
point is intact (4). Thus, the absence of 
modification of p56chk':'P in the check- 

A - uv MMS Y Fig. 3. Potential mediation of 
-IIli- 

kD Wl-KA-Wl KA Y K A  Wl KA 

97- 

mutation of the conserved ly- 
sine residue in the catalytic do- 

: p:c*;y . , main. Complementary DNAs 
encoding wild-type ~ 5 6 ~ ' ' ~ '  

- - t t + t  " pREP81-chklK38A ( W T )  or the K38A mutant (KA), 

fa 3'0 i o  3'0 0 : pREP81 
1 - -  

each with three tandem copies 
0 40 80 120 160 200 of the HA epitope tag at their 

UV dose (JimZ) COOH-termini, were cloned 
- 1 

into pREP81, in which expres- _ _ - -  ~ion is controlled from a weakened nmt7 promoter (78). The plasmids 
46- were introduced into strain NW158, which harbors the chk1::ura.l dis- 

ruption allele. Cells were grown in the presence of thiamine, which 
represses the nmtl promoter, maintaining expression levels at approximately four times that of endog- 
enous genomic chk7:ep (79). Cells were untreated (-) or exposed to UV light (80 J/m2), M M S  (0.2%), or 
gamma (y) radiation (20 Gy) as described in Fig. 2, with the exception that cells were grown in minimal 
medium containing thiamine. Lysates were prepared for immunoblot analysis (33). (6) UV sensitivity of 
cells from a chk7::ura.l strain expressing wild-type chkl + cDNA or chk7K38A cDNA. Plasmids containing 
untagged wild-type chkl+ (pREP81-chkl'), untagged chklK38A (pREP81-chklK38A). or no insert 
(pREP81) were introduced into cells of the chk7::ura4 strain and grown as in (A) in the presence of 
thiamine. Cells were grown to mid-log phase, plated onto minimal medium containing thiamine, and 
exposed to various doses of UV light. For comparison, a wild-type strain (972) with intact chkl' was 
included in the experiment. Survival was determined as in Fig. 1 C. (C) Conversion of the modified form of 
p56Chk1'eP to the same mobility as the unmodified form after treatment with a protein phosphatase. 
Lysates of NW223 (h ' chk7:ep ade6-216 leu7-32) were prepared from cells that had (+) or had not (-) 
been exposed to UV light (1 00 J/m2). Portions of the lysates were incubated at 30" or 0°C in the absence 
(-) or presence (+)of lambda protein phosphatase (XPPase) (23) and were then subjected to immunoblot 
analysis (33). 

Fig. 4. Lack of modification of mcr rau73d raul -1  ramA r a m  mU77A r a U W  
I I I l i I I I I -7  1 ~ 5 6 ~ " ~ '  ep in strains harboring mu- k~ - , - , --,-Y - ,,,. y YYy yY - , y - y 

tat~ons in theradcheckpoint genes. 69- - -- 
Haploid strains were constructed - - - + - - 1  --- 
containing the chk1:ep allele and a 46- 
single rad mutant allele by mating 
and sporulation. Cells of each strain were grown to mid-log phase and either not treated (-) or exposed 
to UV light (45 J/m2) or gamma (y) radiation (20 Gy) as described in Fig. 2. Lysates were prepared and 
analyzed by protein immunoblot with the 12CA5 antibody (33). The checkpoint fad strains are radl-1, 
rad3A, rad9A, radl7A, and rad26A, where A represents a disruption allele of the indicated gene. The 
rad73A strain is defective in nucleotide excision repair. 
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point rad mutants does not  correlate with 
radiation sensitivity in general, hut only 
wit11 loss of the  D N A  damage checkpoint. 
T h e  s~na l l  fraction ofp56cii1~1.'iJ that  is phos- 
phorylated in the radl3  mutant  in  the  
absence of exogenously induced D K A  
ilalnage may indicate that D K A  damage 
that requires md13 for repair is generated 
Lluring cell cycle progression. Low levels of 
intrinsic D N A  damage may activate the  
checkpoint, such that  a fraction o f t h e  cell 

is ~lndergoing a transient arrest 
and D K A  repair a t  all times. 

T h e  observation that D N A  Jamage-in- 
Juced inodification of p56 ' " ' " '~ '~s  depen- 
dent on the function of the checknoint rad 
gene products suggests a inodel in n ~ h i c h  the 
DNA dainage signal is transdllced through 
the rild gene prodllcts to modify p56'"'"'~' 
and to result in cell cycle arrest before 
mitosis. T h e  checknoint rild mutants, h o w  
ever, are also defective for cell cycle arrest 
xvhen D N A  replication is inhibited, where- 
as a strain lacking chkl + f~lnct ion is not (6) .  
Fl~rthermore, p56"'"' '1' did not undergo 
inodification when replication xvas inhihit- 
ed hy 11ydri)xyurea (Fig. 2D). Thus, the 
signal that unreplicated D N A  is present in 
the cell, while also requiring the checkpoint 
rad gene prodllcts for propagation, must di- 
verge and activate a separate pathway to 
signal cell c.ycle arrest. T h e  recently identi- 
fied cdsl '-encoded protein kinase (26) is a 
canilidate for a protein that provides 
L~56"""-like f~lnct ion in the replication 
checkooint oathwav. T h e  cdsl nlutant 1111- 

dergoes aberrant ~nitosis n ~ h e n  exposed to 
l ~ y d r o x ~ ~ ~ r e a  but arrests the  cell cycle when 
LIKA   lam age is generated hy UV light, 

opposite those o f a  chit1 mutant.  
Whereas increased expression of chkl+ par- 
tially rescues the  UV sensitivity of a radl-1 
mutant (6 ) ,  increased expression of cdsl+ 
partially rescues the  hyilrosyurea sensitivity 
of a radl-l  inlltailt hut has no  effect o n  its 
UV sensitivity (26) .  

T h e  gene (ATM)  that is defective in the 
11l1inan genetic disoriler ataxia telangiecta- 
sia ( A T )  has heen identified and secluenced 
(27).  Inilividllals hoinozygo~~s for AT show 
extreine sensitivity to ioni:ing radiation 
and are at increased risk for the  develop- 
ment of cancer (28.  29).  T h e  ATM gene 
encodes a nrotein wit11 seauence silllilaritv 
to the  catalytic dolllain of lipid kinases, 
specifically ph~sphat id~l inosi to l -3 '  kinases 
(27).  Furthermore, A T M  shows sequence 
similarity to the S .  ponzbe lad3 gene in 
regions outside of the  lipid kinase catalytic 
doinail1 (27,  30). T h e  high sensitivity of 
A T  cells to DNA-darnaging agents, partic- 
~ ~ l a r l v  ionizine radiation anil radiolniinetic " 
drugs, is similar to the  phenotype of the 
rad3 mutant.  This sensitivity results froin 
failure of the  cells to arrest at a D N A  
damage checkpoint (3 1 ). Because md3+ ap- 

pears to f ~ ~ n c t i o n  upstrean1 of chkl+,  a ho- 
inolog of citkl + may filnction di)\vnstream 
of A T M  in h l l~nan  cells. Dissection of the 
chit1 +-dependent D K A  damage checkpoint 
in fission yeast should increase our under- 
standing of how eukaryotic cells respond to 
D N A  damage and how defects in this re- 
sponse may contribute to the development 
of cancer. 
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