olefinic double bond in the -electron
bridge could lead to significant improve-
ment in the thermal stability of the chro-
mophore without a sacrifice of its optical
nonlinearity (17).

Accordingly, we synthesized 6, in which
one of the double bonds in the polyene
bridge was replaced by a thiophene ring, by a
reaction analogous to that used for 5 and
characterized the compound by 'H NMR
and elemental analysis. Interestingly, 6 re-
tained the excellent solubility observed for 5
and had a similar absorption maximum in
the visible spectrum. EFISH measurements
indicated that 6 was somewhat more nonlin-
ear than 5, as seen in Table 1. Compound 6
showed no significant decomposition after
heating in methylnaphthalene at 150°C for
20 min (less than 5%) and less than 10%
decomposition after heating at 200°C for 20
min. Thus, these results suggest that it is
possible to develop chromophores with high
optical nonlinearity and adequate thermal
stability and to permit their incorporation
into high-T, polymers.

Our results suggest that the [3-(dicya-
nomethylidene)-2,3-dihydrobenzothiophen-
2-ylidene-1,1-dioxide] acceptor is sufficient-
ly powerful to lead to very large values of
for several extended dialkylaminophenyl-
substituted chromophores. In addition, the
735 value reported here is significantly larger
than any value that has been reported to
date for a poled polymer and almost twice
that of lithium niobate. Molecules can be
synthesized that have not only large nonlin-
earities but also reasonable stability at
200°C. Although much additional work
must be done before commercially viable
electro-optic polymers with such large 755
values become available, these results show
that organic polymers can have substantially
larger optical nonlinearities than lithium
niobate.
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Chaos and the Shapes of Elliptical Galaxies
David Merritt

Hubble Space Telescope observations reveal that the density of stars in most elliptical
galaxies rises toward the center in a power-law cusp. Many of these galaxies also contain
central dark objects, possibly supermassive black holes. The gravitational force from a
steep cusp.or black hole will destroy most of the box orbits that constitute the ““backbone”
of a triaxial stellar system. Detailed modeling demonstrates that the resulting chaos can
preclude a self-consistent, strongly triaxial equilibrium. Most elliptical galaxies may there-
fore be nearly axisymmetric, either oblate or prolate.

Information about the three-dimensional
shape of a galaxy is lost when the galaxy is
projected onto the plane of the sky. This
loss of information is acute in the case of
elliptical galaxies, whose apparent shapes
are elliptical but whose intrinsic shapes
could be oblate, prolate, or fully triaxial.
Before about 1975, elliptical galaxies were
thought to be rotationally flattened oblate
spheroids. The discovery that elliptical gal-
axies rotate much more slowly than does a
fluid body with the same shape (1) led to
the hypothesis_that most of these systems
are triaxial ellipsoids, with shapes that are
maintained by anisotropic velocity disper-
sions rather than by centrifugal force (2).
The triaxial hypothesis was supported by
the successful construction of self-consist-
ent triaxial models on the computer (3).
Most of the stars in these numerical models
occupied “regular” orbits that respect three
isolating integrals, two in addition to the
energy; the major families of regular orbits
are the short- and long-axis “tubes” and the

“boxes” (4).

Box orbits are uniquely associated with

the triaxial geometry; they densely fill a
box- or bow tie-shaped region, and a star on
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such an orbit passes arbitrarily close to the
galaxy center after many oscillations. The
time-averaged shape of a box orbit mimics
that of the underlying galaxy, and the po-
tential from a star on a box orbit helps to
support the triaxial shape of the galaxy as a
whole. Box orbits are always found to be
strongly populated in the self-consistent tri-
axial models. They exist only in triaxial
potentials with “cores,” that is, models in
which the density near the center is approx-
imately constant and the corresponding
gravitational potential is roughly quadratic
in the coordinates (5).

Recent Hubble Space Telescope obser-
vations of the centers of elliptical galaxies
(6) reveal that these galaxies almost never
have constant-density cores; the stellar den-
sity always continues to rise, roughly as a
power law, toward the smallest observable
radius. In fainter ellipticals, the stellar den-
sity p increases roughly as p « r~2, whereas
for brighter ellipticals the cusp slope is p <«
r~1 or shallower (7). In addition, there is
increasingly strong evidence for massive
dark objects (MDOs), possibly supermassive
black holes, at the centers of many elliptical
galaxies (8). In the most convincing cases,
these central singularities appear to contain
as much as 1% of the total mass of the
galaxy.
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A central concentration can
strongly perturb the motion of a star on a
box orbit, regardless of its apocenter dis-
tance, because a star on such an orbit even-
tually will pass arbitrarily close to the center
and be deflected by the strong gravitational
force there (9). The result is a sensitive
dependence of the orbital trajectory on ini-
tial conditions; in other words, the orbit
loses its two nonclassical integrals of mo-
tion and becomes chaotic. The degree of
chaos can be quantified by means of the
Liapunov characteristic numbers that mea-
sure the average rate of exponential diver-
gence of two initially nearby trajectories.
Fig. 1A shows histograms of Liapunov num-
bers for ensembles of boxlike orbits (defined
as orbits that have a stationary point) at
one energy in a triaxial model with the
density law
p(m) = po(m* + mg)~'(1 + m?)™!

22

Xy oz
1=
m—az-l-bz-l-cz (1)

mass

with c/a = 0.5 and bfa = 0.79; x, vy, and x
are spatial coordinates and m defines the
isodensity surfaces. The parameter my is a
“core radius”; when my = 1, Eq. 1 reduces
to the “perfect ellipsoid” in which all
orbits are regular (10), whereas for small
my, this density law has an % central cusp
similar to those observed in many ellipti-
cal galaxies.

When my < 107!, most of the boxlike
orbits are chaotic; the only exceptions are
orbits that lie close to stable, resonant orbits
that avoid the center (Fig. 2A). The de-
struction of the box orbits also occurs in
models with a central singularity or black
hole (Figs. 1B and 2B). In both cases, the
typical Liapunov time scale for the diver-
gence of nearby trajectories is three to five
times the oscillation period of the long-axis

A B

0 01 02

03 04 0 01 02 03

oTd
Fig. 1. Histograms of Liapunov numbers for
isoenergetic ensembles of boxlike orbits in triaxial
potentials. Starting points for the orbits were cho-
sen from a uniform grid on an equipotential sur-
face near the half-mass radius of the model (Fig.
2). Each orbit was integrated for 104 dynamical
times T; the thick and thin curves represent the
largest Liapunov number o, and the second Lia-
punov number o,, respectively. Regular orbits lie
in the narrow peaks near o7, = 0. (A) m, = 1073;
(B) m, = 107", and a central point mass contain-
ing 0.3% of the total galaxy mass has been added.
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closed orbit of the same energy; this period
is defined as the dynamical time (Table 1).
Stars in the central regions of elliptical
galaxies have made 10? to 10% radial oscil-
lations since the epoch of galaxy formation;
thus, elliptical galaxies are many Liapunov
times old.

A star on a chaotic orbit will eventually
visit every point in configuration space con-
sistent with energy conservation; it will fill
a region inside of the equipotential surface
corresponding to its energy. These surfaces
are more nearly spherical than the equiden-
sity surfaces that define the galaxy figure;
hence, chaotic orbits are less useful than
regular box orbits for building self-consist-
ent models. However, even chaotic orbits
have structure. Fig. 3 illustrates the density
of an ensemble of stars that fills chaotic
phase space in an approximately time-inde-
pendent way at one energy. The shape is
similar to that of a superposition of boxlike
orbits, because the chaotic trajectory fills
the part of phase space that would have
been occupied by box orbits in a fully inte-
grable model. However, because the chaotic
phase space at a given energy is intercon-
nected through the “Arnold web” (11),
there exists just a single invariant density at
each energy, as shown in Fig. 3.

The “mixing time” of a chaotic orbit
may be defined as the time required for an
ensemble of stars on that orbit to reach a
fully mixed state like that of Fig. 3. In a real
galaxy, the mixing process is likely to be
extremely complex, involving violent col-
lapse and rapidly varying forces during gal-
axy formation (12). However, we can place
an upper limit on the mixing time by asking
how much time is required for an ensemble
of stars in the chaotic phase space of a
time-independent potential to fill its al-
lowed phase-space region in a nearly uni-
form way. Numerical experiments show
that this relaxation process is roughly expo-
nential, with a time constant of ~100 dy-
namical times in triaxial potentials with
steep cusps or massive central singularities

A
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(13). After a few hundred dynamical times,
the density in the chaotic phase-space re-
gion achieves a nearly constant, coarse-
grained value and ceases to evolve. We
would therefore expect the chaotic orbits in
at least the central regions of a triaxial
galaxy with a strong central mass concen-
tration to be fully mixed.

The invariant distribution of Fig. 3 plays
the role of a single orbit; it represents an
unchanging and irreducible distribution of
stars and can be used as a building block for
a self-consistent model. However, unlike
the regular orbits (which respect three in-
tegrals of the motion and therefore com-
prise a two-parameter family at every ener-
gy), there is only one invariant density at
each energy in chaotic phase space. The
replacement of the regular box orbits by
chaotic trajectories thus limits the freedom
to construct a self-consistent model, be-
cause it effectively reduces the number of
different orbits. This limitation does not
exist in oblate or prolate geometries, how-
ever, because axisymmetric potentials sup-
port only tube orbits, all of which avoid the
center and most of which remain regular.
Thus, the nonexistence of a triaxial equi-
librium with a given density profile would
imply that a galaxy with the same mass
distribution must be either axisymmetric or
in the process of evolving toward an axi-
symmetric state.

The degree to which chaos limits the
freedom to construct triaxial equilibria was
explored by means of two models with Deh-
nen’s (14) density law,

p(m) = pem (1 +m) “~7  (2)

where <y is the logarithmic slope of the
central density profile. The first model ex-
plored (the “strong cusp” model) had vy ~
2, corresponding to fainter elliptical galax-
ies such as M32. The “weak cusp” model
had v = 1, a good description of brighter
ellipticals such as M87. The axis ratios se-
lected were c/a = 0.5 and bla = 0.79. A
total of 7000 orbits were integrated for 100

Fig. 2. (A and B) Starting points of the regular and chaotic orbits whose Liapunov numbers make up the
histograms of Fig. 1, A and B, respectively. Each dot represents an initial point on one octant of the
equipotential surface; small dots are chaotic orbits and large dots are regular orbits. Every orbit was
dropped with zero velocity from this surface. The X and Z axes are the long and short axes, respectively.
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dynamical times in each of the models, and
their time-averaged densities were stored in
a grid of 10® cells. A quadratic-program-
ming algorithm was then used to find a set
of nonnegative orbital weights that repro-
duced the known mass of the model in the
cells (15).

Attempts to construct self-consistent so-
lutions using just the regular orbits failed for
both mass models. Quasi-equilibrium solu-
tions—in which chaotic orbits, computed
for only 100 orbital periods, were included
with arbitrary orbital weights—were found
to exist for both the weak- and strong-cusp
models. However, real galaxies constructed
in this way would evolve near the center as
the chaotic orbits mixed toward their in-
variant distributions at each energy (16).

More nearly stationary solutions were
successfully constructed for the weak-cusp
mass model; all of the chaotic orbits within
the inner half-mass radius could be replaced
by the smaller set of invariant distributions
without violating self-consistency. Howev-
er, these models could not be made fully
mixed at both large and small radii. No
appreciable fraction of the mass could be
placed on fully mixed chaotic orbits in the
strong-cusp model without driving the so-
lution away from self-consistency. The
greater freedom to find solutions in the
weak-cusp case resulted from the larger
number of regular orbit families in this po-
tential, which allowed less weight to be
placed on the chaotic orbits.

These attempts to find self-consistent
equilibria were based on only two strongly
triaxial mass models; more nearly axisym-
metric models with the same density profile
would presumably be easier to construct.
However, these results demonstrate that
chaos can severely reduce the size of solution
space for triaxial models and, at least in some
cases, preclude self-consistent equilibria.

Although no attempts have yet been
made to construct self-consistent triaxial
models with central black holes, the results
in Figs. 1 and 2 suggest that chaos would

Table 1. Liapunov numbers of boxlike orbits in
triaxial potentials. Orbits were computed for 10*
dynamical times at the half-mass energy in the
potential corresponding to Eq. 1, with ¢/a = 0.5
and b/a = 0.79. Liapunov numbers o, and o, are
given in units of the dynamical time; Mg,, repre-
sents black hole mass in units of the total mass of
the model.

Mo Men a4 LF

1077 - 0.14 £ 0.06 0.045 = 0.02
1072 - 0.21 £0.09 0.078 =0.03
1078 - 0.27 + 0.056 0.085 = 0.02
10-*  10°® 0.15+0.083 0.066 = 0.02
107" 3x107® 0.20 £ 0.04 0.097 +0.02
107" 1072 0.28 +x0.08 0.16 *=0.04

constrain such solutions about as strongly as
it constrains triaxial models with steep den-
sity cusps. Secure detections of MDOs have
been made in at least two elliptical galaxies
(17, 18); the kinematical signature in both
cases was a high streaming velocity of stars
or gas very near the center. In addition,
strong kinematical evidence for MDOs has
been found in a number of SO galaxies and
spirals with bulges (8). The failure to detect
MDO:s in some ellipticals may be attribut-
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Fig. 3. Invariant density of an isoenergetic ensem-
ble of 5000 stars in the chaotic phase space of a
triaxial model with m, = 1073, c/a = 0.5, and b/a
= 0.79. The X and Z axes are the long and short
axes, respectively, of the triaxial figure. Plotted are
the densities near each of the three principal
planes.
SCIENCE

VOL. 271 + 19 JANUARY 1996

REPORTS

able to the lack of a rotating subpopulation,
or to the fact that the galaxy is not oriented
in such a way that the rotation is easily
observed. The average mass of the MDOs in
these galaxies is ~0.0045 when expressed in
units of the total stellar mass of the galaxy.
This is close to the average mass required
per galaxy if MDOs are dead quasars (19),
which suggests that most or all ellipticals
may harbor nuclear black holes.

If most elliptical galaxies contain steep
density cusps, nuclear black holes, or both,
then the arguments given above suggest
that axisymmetry would generally be pre-
ferred over triaxiality for these galaxies.
This hypothesis would be especially likely
to be true for lower luminosity ellipticals,
which have the steepest cusps and the
shortest dynamical times on average (6).
The axisymmetric hypothesis is difficult to
confirm because no unambiguous test for
triaxiality exists. However, most recent
studies of elliptical galaxy intrinsic shapes
have found that few, if any, elliptical gal-
axies need to be strongly triaxial (20).

The dependence of observed rotation
rate on flattening in low-luminosity ellipti-
cals has long been known to be consistent
with oblate symmetry for these galaxies
(21). A classical test for triaxiality is the
dependence of major-axis orientation on
radius (22). Such “isophote twists” are seen
in a number of elliptical galaxies, but their
interpretation is complicated by the likeli-
hood that some of the twisted galaxies are
not relaxed, whereas in others the twist may
result from misaligned disks and bars. A
stronger test for triaxiality is the detection
of stellar streaming along the apparent mi-
nor axis of a galaxy (22). Minor axis rota-
tion is rare, however, and a statistical study
of the 38 elliptical galaxies for which two-
dimensional velocity data are available sug-
gests that the data can be well fit by a
distribution in which 60% of galaxies are
oblate and 40% are prolate (23).

The shapes of a few elliptical galaxies
have been constrained by detailed compar-
ison of numerical models with kinematical
data. The best example is M32, the dwarf
companion to the Andromeda galaxy. M32
has a p @ 171 stellar cusp and also shows
convincing evidence for a MDO containing
~0.25% of the total galaxy mass (17); thus,
axisymmetry would be expected to be
strongly preferred for this galaxy. In fact,
oblate models reproduce the detailed kine-
matics of M32 extremely well (24). Rings
and disks of gas or dust can sometimes be
used as tracers of the shape of the gravita-
tional potential in elliptical galaxies (25),
although few of these subsystems are both
extended and regular enough for the results
to be convincing. However, the kine-
matics of a neutral hydrogen ring surround-
ing the elliptical galaxy IC 2006 suggest
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that its dark halo is accurately axisymmetric
(26).

Bright ellipticals are observed to be
slowly rotating, and if these galaxies are
generically axisymmetric, their slow rota-
tion implies nearly equal numbers of stars
on tube orbits traveling in both directions.
Such a configuration would arise naturally
as the potential evolved from triaxiality
into axial symmetry by way of the mech-
anism described here: Stars on boxlike
orbits undergo periodic changes in the
direction of their angular momenta, and
eventually an ensemble of such stars
would presumably populate a set of tube
orbits with roughly equal numbers of ro-
tating and counterrotating members. A
galaxy with this orbital composition might
reveal itself by a strongly flattened or dou-
ble-peaked distribution of line-of-sight ve-
locities (27).
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Mineralization of Chlorofluorocarbons and
Aromatization of Saturated Fluorocarbons
by a Convenient Thermal Process

Juan Burdeniuc and Robert H. Crabtree*

A chemical reaction has been discovered that mineralizes chlorofluorocarbons (CFCs) and
enables the complete destruction of these environmentally hazardous species. The re-
action products are easily handled solids, including recyclable alkali metal halides. Under
milder conditions, the same reaction causes partial defluorination of cyclic perfluoroal-
kanes to yield perfluoroarenes, which are valuable chemical intermediates. The vaporized
substrates are passed over a packed bed of heated sodium oxalate; heating at 270° to
290°C causes mineralization, whereas heating at 230°C causes aromatization.

Saturated fluorocarbons and CFCs  are
among the most inert substances known (1).
This inertness has environmental conse-
quences because, when released, these spe-
cies are not destroyed in the lower atmo-
sphere but survive to reach the stratosphere.
For example, CF,, released in electrolytic
aluminum production, has a high global
warming potential through the greenhouse
effect (2, 3). CFCs, popular refrigerants, not
only have global warming effects but also
have a high potential for ozone depletion,
because they can release Cl atoms under
high-energy ultraviolet photolysis in the
ozone layer (3). The same chemical inertness
makes it very difficult to effectively dispose
of existing stockpiles of CFCs and similar
species, and this has been called “a problem
of major dimensions” (4, p. 25). Very few
reactions of fluorocarbons are known (5);
most involve the more reactive fluoroarenes
or require corrosive reagents (or reagents
that are available only in research quanti-
ties). Few of these reactions are applicable to
the most refractory saturated species, such as
Freons, and none is convenient for routine
use on a large scale.

We looked for a two-electron reducing
agent, on the grounds that fluoroalkenes are
stabler intermediates than are the radicals
that would be formed in a one-electron
reduction. We wanted to combine the re-
ductant with a fluoride-abstracting compo-
nent, such as a metal cation. Alkali metal
oxalates therefore seemed a good choice.
Here, we report an effective and inexpen-
sive method of mineralizing CFCs by pass-
ing the vapor through a packed bed of
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powdered sodium oxalate (Na,C,0,) at
270°C, with the use of a vapor-phase mul-
tipass apparatus for gases (6) or a reflux
multipass apparatus for liquids (7). This
reaction, as applied to CF,Cl, (Freon-12),
is shown in Eq. 1:

CF,Cly(g) + 2Na,C,04(s) = 2NaF(s)
+ 2NaCl(s) + C(s) + 4CO,(g) (1)

Elemental carbon, which can be isolated
and weighed, is formed in the stoichiomet-
ric amount expected from Eq. 1. The resi-
due also contains NaCl and NaF in the
expected amounts. Very high mineraliza-
tion yields (8) were obtained from typical
Freons (Table 1). No more than three pass-
es were ever required, and for CIF,CCF,Cl
(Freon-114), even a single pass through the
bed caused complete mineralization. This
reaction looks promising for the destruction
of CFC stockpiles because it requires only
very simple hot-tube chemistry, shows no
tendency to give uncontrollable exotherms,
and uses an inexpensive and noncorrosive
reagent. The products (carbon and the al-

Table 1. Mineralization products of certain per-
halocarbons. TM, trap-to-trap multipass appa-
ratus (6); RM, reflux multipass apparatus (7); SP,
single-pass apparatus; PS, passes (72). The
number of passes required for complete miner-
alization is given.

Meth-  PS Product vield (%)
Substrate od  (no) _—
’ C cl-  F

CCl, RM - 99.5 100 -
CFCl, ™ 2 100 98.1 98.0
CF.Cl, ™ 3 100 95.0 95.0
CIF,CCF,ClI SP 1 96.0 100 99.0






