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Regulation of pH04 Nuclear Localization by the 
PH080-PH085 Cyclin-CDK Complex 

Elizabeth M. O'Neill, Arie Kaffman, Emmitt R. Jolly, 
Erin K. O'Shea* 

PH04, a transcription factor required for induction of the pH05 gene in response to 
phosphate starvation, is phosphorylated by the PH080-pH085 cyclin-CDK (cyclin-de- 
pendent kinase) complex when yeast are grown in phosphate-rich medium. pH04 was 
shown to be concentrated in the nucleus when yeast were starved for phosphate and was 
predominantly cytoplasmic when yeast were grown in phosphate-rich medium. The sites 
of phosphorylation on pH04 were identified, and phosphorylation was shown to be 
required for full repression of pH05 transcription when yeast were grown in high phos- 
phate. Thus, phosphorylation of pH04 by PH080-pH085 turns off pH05 transcription by 
regulating the nuclear localization of PH04. 

T h e  transcription of PHOS, which encodes a 
secreted acid phosphatase, is tightly repressed 
when Sacchnromyces cerevisine are grown in 
phosphate-rich medium, and its induction is 
more than 100-fold increased when yeast are 
starved for phosphate ( 1  ). Transcriptional in- 
duction of pH05 requires the transcription 
factor PH04 ,  and correlative evidence sug- 
gests that p H 0 4  activity is negatively regulat- 
ed by phosphorylation (2).  When  yeast are 
grown in phosphate-rich medium, the 
PH080-PH085 cyclin-CDK (cyclin-depen- 
dent kinase) complex phosphorylates P H 0 4  
(2) and transcription of P H 0 5  is repressed. 
When yeast are starved for phosphate, the 
kinase activity of the PH080-pH085 com- 
plex is down-regulated by the CDK inhibitor 
PH081  (3). This reduced activity results in 
the appearance of an underphosphorylated 
form of p H 0 4  (2) that, in colnhination with 
a second transcription factor, P H 0 2 ,  hinds to 
the pH05 promoter and activates pH05 
transcription (4). 

W e  wished to determine how changes in 
phosphate availability affect P H 0 4  func- 

tion. Phosphate starvation does not have a 
large effect on P H 0 4  stability; no difference 
in the arnount of P H 0 4  is observed hetnreen 
yeast grown in low versus high phosphate 
medium (2).  Because PI304 occupies binding 
sltes in the P H 0 5  promoter in vivo under 
inducing, hut not repressing, conditions (S), 
the phosphate signal is likely to affect P H 0 4  
function at the level of DNA binding or some 
prior step, such as nuclear localization. Pre- 
lirninary data suggest that phosphorylated and 
~~nphosphorylated p H 0 4  have a similar affin- 
ity for DNA (6).  

W e  therefore examined the suhcellular 
localization of P H 0 4  in wild-type cells 
grown in low or high phosphate medium. 
P H 0 4  is concentrated in the nucleus nrhen 
yeast are starved for phosphate and is largely 
cytoplasmic when yeast are grown in phos- 
phate-rich medium (Fig. 1, A to D). In  
pho80A and pho851 strains, in which P H 0 4  
is not phosphorylated (2)  and which express 
pH05 constitutively ( I ) ,  p H 0 4  was con- 
centrated in the nucleus, even when the 
strains were grown in phosphate-rich medi- 
um 16). In  contrast. P H 0 4  was  redom mi- 

Department of Blochemstn/ and Bophyslcs, Unlverslty n a n t l ~  a pho8IA strail' groan 
of Calforna at San Francsco. School of Medclne San in high or low phosphate conditions (6). 111 

Francisco, CA 941 43-0448, USA. this strain, p H 0 4  is phosphorylated even 
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and pH05 expression is uninducible (1). 
These data demonstrate that the PHO signal 
transduction pathway is required for properly 
regulated nuclear localization of PH04. 

Our next goal was to determine whether 
phosphorylation was required for the regula- 
tion of PHW activity. We therefore wished 
to identify the residues of PHW that are 
phosphorylated by PH080-PH085. Several 
observations guided our efforts to identify 
these sites of phosphorylation: (i) Phos- 
phoamino acid analysis indicated that pH04 
is phosphorylated exclusively on serine resi- 
dues (Fig. 2A); and (ii) PHW has no perfect 
matches to the CDK phosphorylation site 
consensus Ser/Thr-Pro-X-Lys/Arg (7) (where 
X is any amino acid), but does contain six 
Ser-Pro dipeptide sequences (Fig. 2B). We 
tested whether these six Ser-Pro dipeptides 
are sites of phosphorylation by PH080- 
PH085. The observation that the PH080- 
and PH085-dependent phosphorylation sites 
observed in vitro and in vivo are similar (2) 
allowed us to use pH04 phosphorylated in 
vitro by PH080-pH085 for the experiments 

- 
WT, low PI 

Fig. 1. Localization of the pH04 protein. Indirect 
immunofluorescence was performed with pH04 
antiserum to determine the subcellular localization 
of pH04 (7 7). Each pair of panels shows the same 
field; the left panel of each pair shows the pH04 
staining pattern, and the right panel shows DAPl 
staining (to visualize nuclei). The genotype of each 
strain (18) and the type of medium (19) in which it 
was grown are as follows: (A and 8) a wild-type 
skain grown in phosphate-rich medium; (C and D) 
a wild-type strain grown in phosphate-depleted 
medium; (E and F) apho4A strain grown in phos- 
phate-rich medium. 

described here. We generated a mutated ver- 
sion of pH04 with six serine to alanine 
changes in the Ser-Pro dipeptides, called 
PH04SA1". We analyzed this mutant by tryp- 
tic phosphopeptide analysis, which revealed 
that all of the major phosphopeptides were 
missing from the PH04SA1-6 map (Fig. 2C; 
compare PH04SA1-6 with PHWWr). These 
data suggest that the major sites of phospho- 
rylation on pH04 are among the six Ser-Pro 
dipeptides. 

To determine which among these six 
dipeptide sequences are sites of phospho- 
rylation, we analyzed a series of six mutants, 
each with a single serine residue mutated to 
alanine (PH04SA1 to PH04SA6). Compar- 
ison of the tryptic phosphopeptide map of 
wild-type pH04 with those of mutants 
PHWSA1 and PH04SA5 indicated that no 
peptides were missing from the phos- 
~ h o ~ e ~ t i d e  maps of these mutants (Fig. 
2C). In contrast, the tryptic phosphopep- 
tide maps of mutants PH04SAZ, PH04SA3, 
PH04SA4, and PH04SA6 (Fig. 2C) had at 
least one altered or missing phosphopeptide 
(8), suggesting that Ser-Pro dipeptides 2,3, 
4, and 6 are sites of phosphorylation by 
PH080-pH085 and that mutation of 
serine to alanine prevents phosphorylation 
of that site. An alternative explanation is 
that mutation of serine to alanine at one or 
more of these sequences affects phospho- 
rylation of a different serine. 

To distinguish between these explana- 
tions, we used a second approach that exploits 
the observation that CDKs phosphorylate 
threonine as well as serine (7). Six pH04 

mutants were generated, each containing a 
single serine to threonine change in Ser-Pro 
dipeptides 1 through 6 (PH04ST1 to 
PHWST6), and analyzed by phosphoamino 
acid analysis (Fig. 2A). Wild-type PHW was 
phosphorylated only on serine (Fig. 2A); thus, 
if a phosphorylation site is mutated to threo- 
nine, phosphoamino acid analysis should re- 
veal both phosphoserine and phosphothreo- 
nine. Phosphothreonine was present in 
PHWST1, PHWSrZ, PHWSr3, PHWST4, 
and PHWST6, but not in PHWST5 (Fig. 2A). 
Thus, both the tryptic phosphopeptide anal- 
ysis and phosphoamino acid analysis suggest 
that Ser-Pro dipe~tides 2,3,4,  and 6 are sites 
of phosphorylation. In the case of Ser-Pro 
dipeptide 1, some phosphothreonine was de- 
tected in the phosphoamino acid analysis of 
mutant PHWST1, yet no difference was ob- 
served between the tryptic ~hos~hopeptide 
maps generated with PHWSA1 and wild-type 
PHW (9). 

To determine whether Ser-Pro dipeptide 
1 is a site of phosphorylation, we generated 
two additional mutants, PH04SA2346 and 
PH04SA12346, in which four or five of the 
serine residues were changed to alanine. 
These two mutants, in addition to 
PH04SA1-6 and wild-type PH04, were sub- 
jected to phosphorylation in vitro by 
PH080-PH085, and the total amount of 
phosphate incorporated into each protein 
was determined and compared with that 
incorporated into wild-type pH04 (Fig. 3). 
PH04SA12346 and PH04SA1-6 each incor- 
porated 4% of the phosphate incorporated 
by wild-type PH04, whereas PH04SA2346 

Fig. 2. Identification of the sites of phosphoryl- A 
ation on PH04. (A) Phosphoamino acid analysis 
(20) of wild-type pH04 or mutant pH04 proteins 
with single serine to threonine substitutions at pu- 
tative phosphoacceptor residues. Analysis was 
performed with protein phosphorylated in vitro by 
PH080-PH085. Shown in the lower right is a 
schematic diagram representing ninhydrin visual- 
ization of the migration of standards used for 
phosphoamino acid analysis: phosphoserine (P- 
Ser), phosphothreonine (P-Th'r), and phosphoty- 
rosine (P-Tyr). (B) Schematic diagram of the 

C 

pH04 protein.  he amino acid of the 
serine residue in each Ser-Pro dipeptide is indicat- 
ed (SP1 to SP6) (27). The basic helix-loop-helix 
domain, which contains both the DNA binding 
and dimerization domains of PH04, consists of 
residues 251 to 309 (22). A putative transcription 
activation domain consists of residues 1 to 109 
(23). (C) Tryptic phosphopeptide analysis of wild- 
type pH04 or mutant pH04 proteins with serine 
to alanine substitutions at ~utative ~hos~hoac- 
ceptor residues. Proteins were phosphoryiated in 
vitro by PH080-PH085 (24). Ser-Pro dipeptides 2 
and 3 are contained in the same twptic peptide, 
which results in a complicated pattern of phosphopeptides in the maps of PH04SA2 and PH04- (8). 
Dashed lines indicate missing or altered phosphopeptides; the large dashed ellipse marks where the 
tryptic peptides derived from Ser-Pro dipeptides 2 and 3 were located in the wild-type map. The origin is 
in the lower left comer of each panel. Samples were electrophoresed in the horizontal dimension and 
chromatography was performed in the vertical dimension. 
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incorporated 9%. From these data, we con- 
clude that Ser-Pro dipeptide 1 is a site of 
phosphorylation and that Ser-Pro dipep- 
tides 1 , 2 , 3 , 4 ,  and 6 represent the predom- 
inant sites of phosphorylation by PH080- 
PH085 (10). This result is consistent with 
mass spectrometry data that demonstrate 
that a considerable fraction of wild-type 
p H 0 4  phosphorylated in vitro contains five 
phosphate groups ( I I ). 

To test directly whether phosphoryl- 
ation of pH04 is required for it to be local- 
ized in the cytoplasm, we examined the sub- 
cellular localization of the PH04SAL2346 mu- 
tant expressed from a plasmid in a pho4A 
strain grown in phosphate-rich medium (Fig. 
4, A and B). We observed that all 
PH04SAL2346 visible above background lev- 
els was concentrated in the nucleus. By con- 
trast, wild-type pH04 expressed from a plas- 
mid in the same strain was predominantly 
cytoplasmic (6). These data demonstrate 
that phosphorylation of PH04 is required for 
it to be localized in the cytoplasm under 
repressing (high phosphate) conditions. 

To determine whether the regulated nu- 
clear localization of pH04 is sufficient for 
proper regulation of PH05 expression, we 
examined acid phosphatase activity in yeast 
expressing the PH04SAL2346 mutant. This 
strain expresses PH05 constitutively in phos- 
phate-rich medium (Fig. 4C), though the lev- 
el of PH05 expression is only 10% of the fully 
induced level observed with wild-type pH04 
in phosphatedepleted medium (1 2). We also 
examined the ability of PH04SA12346 to in- 
duce PH05 expression under conditions of 
phosphate starvation. This mutant form of 
pH04 activated PH05 expression to 42% of 
the level observed for wild-type pH04 (Fig. 
4C), suggesting that this mutated form of 

Mock PH080-pH085 
n- 

Fig. 3. PH04SA12346 is not efficiently phospho- 
lylated by the PH080-PH085 cyclin-CDK com- 
plex. The amount of phosphate incorporated into 
PH04SA1-6, PH04SA12346, and PH04Sm346 was 
compared relative to that in wild-type pH04 in an in 
vitro kinase assay performed with immunopurified 
PH080-PH085 kinase (25). For the negative con- 
trol, wild-type pH04 protein was used as substrate 
in a kinase assay performed with a mock PH080- 
PH085 immunopurification derived from an extract 
that did not contain epitope-tagged PH080. 

pH04 is mildly defective as a transcriptional 
activator. These data suggest that whereas 
phosphorylation of pH04 is important for full 
repression of PH05, the PHO pathway may 
also control another aspect of pH04 activity 
or pH05 regulation. 

We have described an important mech- 
anism by which the activity of the tran- 
scription factor pH04 is regulated by the 
PH080-pH085 cyclin-CDK complex in 
response to extracellular phosphate levels. 
A different mechanism was proposed, based 
on data obtained from two-hybrid analysis 
of pH04  and PH080 (13), in which 
PH080 binds to pH04  and masks its tran- 
scription activation domain. We believe 
that although the PH04-PH080 interac- 
tion may regulate pH04 activity under cer- 
tain conditions, it is not a physiologically 
relevant mechanism for the following rea- 
sons. (i) pH04  is not bound to its sites in 
the PH05 promoter in vivo when yeast are 
grown in high-phosphate medium (5). If 
pH04  is not bound to the PH05 promoter 

High 
Pi 

LOW 
42% 

Pi 

Fig. 4. PH04SA12346 is localized to the nucleus in 
phosphate-rich medium and causes partially con- 
stitutive expression of PH05. (A),lndirect immuno- 
fluorescence (1 7) performed with pH04 antiserum 
on a pho4A strain transformed with a low-copy 
plasmid that expresses PH04SA12346 under the 
control of the pH04 promoter [yCp400SA12346 
(26')l grown in phosphate-rich medium (19). (B) 
DAPl staining of the field shown in (A) permits visu- 
alization of nuclei (1 7). (C) Yeast strains expressing 
no PH04, wild-type PH04, or PH04SA12346 (27) 
were grown on plates containing either standard 
synthetic medium (high phosphate, upper panel) or 
phosphate-depleted medium (low phosphate, low- 
er panel) and then overlaid with agar containing a 
chromagenic phosphatase substrate (28). Yeast 
strains expressing pH05 turn red by this assay. 
Acid phosphatase activity was also measured by 
means of a quantitative liquid phosphatase assay 
(29). The acid phosphatase activity for 
PH04SA12346 is given as a percentage of that ob- 
sewed with yeast expressing wild-type pH04 
grown in phosphate-depleted medium. 

under these conditions, an interaction that 
masks its activation domain is not likely to 
be relevant for PH05 regulation. (ii) The 
two-hybrid experiments were performed 
with highly overexpressed PH04, a condi- 
tion that results in accumulation of pH04 
in the nucleus (6) and in constitutive ex- 
pression of PH05 in high phosphate medi- 
um (14). We believe that the masking mod- 
el may be relevant only under conditions 
that result in the accumulation of pH04 in 
the nucleus in high phosphate medium, 
such as when pH04 is overexpressed or in 
yeast expressing the PH04SAL2346 mutant. 

This type of masking may be responsible 
for the incomplete derepression of PH05 
(only 10%) observed with yeast expressing 
PH04SA12346 grown in phosphate-rich me- 
dium. Furthermore, the ability of PH080 to 
interact with pH04  could be regulated by 
the CDK inhibitor PH081, which would 
explain the observation that yeast express- 
ing PH04SA12346 are still partially respon- 
sive to phosphate starvation. 

The mechanism regulating pH04  local- 
ization is similar to the mechanism by 
which the yeast transcription factor SWI5 
is regulated by the CDK CDC28 (15), sug- 
gesting that CDKs may regulate the subcel- 
lular localization of many different proteins 
by phosphorylation. In contrast to PH04, 
the physiological relevance of regulated nu- 
clear localization of SWI5 is unclear, be- 
cause a mutated form of SWI5 that is in the 
nucleus at all stages of the cell cycle does 
not cause inappropriate expression of the 
SWI5 target gene H O  (1 5). 

A lack of physiologically relevant cy- 
clin-CDK substrates has hampered efforts to 
determine the mechanisms by which these 
important kinases regulate cell cycle events. 
This description of how PH080-PH085 
acts to regulate the activity of pH04 pro- 
vides an important insight into how phos- 
phorylation by cyclin-CDK complexes can 
affect protein function. 
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